
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Observation of Discrete-Time-Crystal Signatures in an
Ordered Dipolar Many-Body System

Jared Rovny, Robert L. Blum, and Sean E. Barrett
Phys. Rev. Lett. 120, 180603 — Published  1 May 2018

DOI: 10.1103/PhysRevLett.120.180603

http://dx.doi.org/10.1103/PhysRevLett.120.180603


Observation of discrete time-crystalline signatures in an ordered

dipolar many-body system

Jared Rovny, Robert L. Blum, and S. E. Barrett∗

Department of Physics, Yale University,

New Haven, Connecticut 06511, USA

(Dated: March 21, 2018)

Abstract

A discrete time crystal (DTC) is a robust phase of driven systems which breaks the discrete

time translation symmetry of the driving Hamiltonian. Recent experiments have observed DTC

signatures in two distinct systems. Here we show NMR observations of DTC signatures in a third,

strikingly different system: an ordered spatial crystal. We use a novel DTC echo experiment to

probe the coherence of the driven system. Finally, we show that interactions during the pulse of

the DTC sequence contribute to the decay of the signal, complicating attempts to measure the

intrinsic lifetime of the DTC.
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Periodic driving of a many-body system may lead to interesting out-of-equilibrium states

of matter. A recently described phenomenon that has received much attention is the discrete

time crystalline phase, in which a driven system spontaneously breaks the discrete time

translation symmetry of its underlying Hamiltonian (also known as a Floquet time crystal,

or a π-spin glass) [1–6]. Following a proposal for how to realize a discrete time crystal

(DTC) [7], two experiments in quick succession showed evidence of DTC order. The first

used trapped ions [8], and closely followed original theoretical models for DTC behavior,

specifically working in a regime thought to be conducive to many-body localization (MBL)

[9]. The second used diamond NV centers, which introduced several novel features: many

spins, 3-dimensional geometry, and long-range dipolar interactions [10]. Although systems

with these traits are considered unlikely candidates for MBL, sources of disorder did exist in

that experiment, leaving some uncertainty as to the role of MBL in the observed signatures

of DTC order [11–14].

In this Letter, we report the observation of discrete time-crystalline signatures in a system

expected to be even further from the MBL limit than prior systems: an ordered spatial

crystal. We observe robust oscillations at half the drive frequency (“DTC oscillations” for

brevity) across orders of magnitude in interaction time (Fig. 1, 2). We also study the

decay mechanism of the DTC oscillations, with two results. First, we show by generating

a time-reversed DTC echo that the density matrix is more coherent than the original DTC

sequence reveals. Second, we show that the effect of interactions during the nonzero pulse

duration of the DTC sequence limits our ability to observe the intrinsic lifetime of the DTC

oscillations.

We study the 100% occupied crystal lattice of spin-1/2 31P nuclei in ammonium dihy-

drogen phosphate (ADP), with chemical formula NH4H2PO4. ADP is an ionic, tetragonal

crystal which also contains spin-1/2 1H nuclei (99.98% abundant) and spin-1 14N nuclei

(99.64% abundant) [15].

In the rotating frame [16], the secular internal spin Hamiltonian for 31P is

Hint = HP
Z +HP,P

zz +HP,H
zz +HP,N

zz . (1)

Here, HP
Z ≈ ΩIzT is a single-spin Zeeman term due to a uniform resonance offset [17], and

Hzz describes the various secular dipolar couplings between spins (where we omit terms

that do not involve 31P) [18]. These dipolar coupling terms are summarized in Table I, with
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FIG. 1. (color online). After preparing the 31P spins in a +z state, we measure the signal after

the pulse sequence {τ − Xπ}
N . Green dots are for N odd, blue are for N even, and lines are

to guide the eye. (a) For τ = 12.5 µs and θ = 0.995π, the response is an oscillation at half the

drive frequency, corresponding to a single peak in the Fourier transform at normalized frequency

ν̃ = 1/2. (b) At the same τ = 12.5 µs but with θ = 1.054π, the signal exhibits a beat pattern,

corresponding to a splitting of the Fourier peak. (c) For increased τ = 392.5 µs and θ = 1.060π,

the sharp peak at ν̃ = 1/2 is restored, despite the deviation of θ from π.

typical interaction frequencies W/2π from the numerics which best match our experiments

[16]. Note that the dipolar coupling is a long-range interaction (Bij ∝ r−3 in a 3D system).

During a strong RF pulse of phase φ, an external pulse Hamiltonian HRF = −~ω1IφT
is

added to Eqn. 1. Since ω1/2π ≈ 68 kHz is so large, the internal Hamiltonian terms are

often ignored during the pulse action (the delta-function pulse approximation) [18–20]. We

will revisit this approximation later.

There are four primary differences between the spin Hamiltonian in this system and prior

models. First, the spin Hamiltonian is exceptionally ordered. The Zeeman term is extremely

uniform in space, and the symmetry of the ADP crystal causes each 31P nucleus to experience

an identical set of dipolar couplings from other 31P, 1H, and 14N [16]. Second, rather than

having only an Ising-like term IziIzj , the dipolar coupling between the 31P nuclei includes
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TABLE I. Terms in the Hamiltonian involving 31P nuclear spins in ADP. In S.I., the dipolar

coupling constant for a pair of spins is Bij = µ0

4π
γiγj~2

|~rij |3
1
2
[1 − 3cos2(θij)], where θij is the angle

between the internuclear vector ~rij and the z axis (defined by the static external field), µ0 is

the vacuum permeability, and γi and γj are the nuclear gyromagnetic ratios of the two spins.

{Iφ, Sφ, Rφ}, φ = x, y, z, are the spin operators for {31P,1H,14N}. In the presence of the external

H0 = 4T field, the Larmor frequencies ω0/2π = γH0/2π of 14N, 31P, and 1H nuclei are 12, 69, and

170 MHz respectively.

Hamiltonian term Typical interaction freq. (Hz)

HP,P
zz =

∑
i,j>iB

P
ij(3IziIzj −

~Ii · ~Ij) WP,P/2π = 508

HP,H
zz =

∑
i,j B

H
ij(2IziSzj) WP,H/2π = 3500

HP,N
zz =

∑
i,j B

N
ij(2IziRzj) WP,N/2π = 97

“flip-flop” terms Ixi
Ixj

+IyiIyj = (I+i
I−j

+I−i
I+j

)/2. We will exploit this difference to make

echoes, as we describe below. Third, while the detected spin-1/2 31P spins interact among

themselves, they also interact with two other spin species which are not directly affected

by the repeated pulses: the spin-1 14N (with a weaker coupling) and the spin-1/2 1H (with

a stronger coupling). Fourth, we are able to selectively use high power continuous wave

decoupling to “effectively remove” the 1H from the spin Hamiltonian; we label this “1H off”.

Experiments where this technique is not used will be labeled “1H on”.

To do these experiments, we first prepare the 31P spins in a weakly polarized +z state

(not a pure state) by cross-polarizing the 31P spins with the bath of room-temperature 1H

spins, producing an initial +y-polarization of 31P, then applying a final pulse to rotate the

magnetization into ẑ [16]. While this procedure improves the initial polarization by a modest

factor γH/γP ≈ 2.5, it significantly increases our ability to quickly repeat experiments, as the

relaxation time TH
1 = 0.6 s of the 1H is much faster than that of the phosphorus, TP

1 = 103 s.

Beginning with the enhanced 31P spin polarization, we apply the pulse sequence {τ −

Xθ}
N , where τ is a wait time, and the pulse Xθ is a rotation about +x̂ by angle θ. After N

such repeated Floquet cycles, we apply a final Xπ/2 to generate an NMR signal that reveals

the z-magnetization after N cycles. Unless otherwise stated, we apply 1H decoupling [21]

from the end of cross polarization through the readout. After reinitializing the starting state

over time ≈ 5TH
1 , the pulse sequence is repeated for the next N , from N = 1 to N = 128,
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FIG. 2. (color online). To explore the onset and robustness of oscillations at half the drive

frequency, we examine the crystalline fraction f using decoupling to turn the 1H off (left) and on

(right). (a,d) The crystalline fraction varies smoothly as a function of θ/π, fitting to Gaussians.

Crystalline fractions from τ = 12.5 µs (open triangles) and 392.5 µs (closed circles) are shown. The

horizontal dotted line shows f = 0.1. (b-c) Cutoff at f = 0.1 from the Gaussian fits, corresponding

to the region in θ and τ within which we observe persistent DTC oscillations. With the 1H turned

off, the boundary of this region shows structure near τ = 1 ms (see [16] for further discussion).

We also show |θ − π| = WP,Pτ (black dashes, b-c,e-f), where WP,P is the typical interaction scale

of the 31P-31P coupling (Table I). For τ > 10 ms, the decoupling power begins to heat the tank

circuit, skewing results, preventing exploration of the τ > 10ms region for 1H off. (d-f) Without

decoupling, we can avoid heating and explore further in τ with 1H on. In (f), data span the range

0.03 < WP,Pτ < 3200 radians.
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producing a discrete time signal S(t) with Fourier transform S(ν). In practice, the internal

Hamiltonian (Eqn. 1) acts not only during wait time τ , but also during the pulse, which

is of duration tp ≈ 7.5µs. The total Floquet period is T = τ + tp, with drive frequency

νF = 1/T ; below, we examine the spectrum S(ν̃) as a function of the normalized frequency

ν̃ ≡ ν/νF .

At small τ and θ ≈ π, the system responds with trivial oscillations at half the drive

frequency, i.e., at ν̃ = 1/2 [Fig. 1(a)]. As θ is adjusted away from π, the response beats with

frequency determined by θ − π [Fig. 1(b)], also an expected result. However, with θ 6= π

and increased values of τ , the system returns to robust ν̃ = 1/2 oscillations, a signature of

DTC behavior [7] [Fig. 1(c)].

We explore this behavior as a function of τ and θ by examining the “crystalline fraction”

f = |S(ν̃ = 1/2)|2/
∑

ν̃ |S(ν̃)|
2, as defined in [10], except that we Fourier transform our entire

S(t) rather than just a late-time window (see [16] for further discussion of this point). For

given τ , we fit the crystalline fraction as a function of θ to Gaussians with good results [Fig.

2(a)]. Note that the precise shape of f(θ) does depend on the choice of Fourier transform

window size, as described in [16]. These Gaussians reveal a region within which the robust

ν̃ = 1/2 oscillations are detectable (the “DTC region”), and outside of which there are

diminished or split Fourier peaks. We may visualize the DTC region [shown in Fig. 2(b-c)]

by choosing a cutoff f = 0.1. The width of the DTC region increases with τ at short τ ,

fluctuates slightly near τ = 1ms (discussed further in [16]), and then approaches a steady

value at long τ .

Although we explore multiple decades with 1H off, heating of the NMR tank circuit (from

CW decoupling) imposes an experimental barrier for τ > 10ms [16]. In order to explore

further in τ , we turn off the decoupling, allowing the 1H to act. We prepare the initial state

in the same way as described above, but then apply pulses to the 31P only [see Fig. 2(d-f)].

In this 1H-on case, the DTC region approaches its maximum width faster as a function of τ ,

and shows little to no fluctuation in width over many decades in τ . The width appears to

decrease slightly when the experiment time approaches T P
1 , the relaxation time of the 31P

spins.

While these robust oscillations for many τ are distinctive signatures of a discrete-time-

crystalline phase, the lifetime of the state is of particular interest. To explore reasons for the

decay of oscillations during the DTC experiment, we begin by considering a trivial decay
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FIG. 3. (color online). A decay envelope cosN (ǫ) (solid black line) bounds the magnitude of our

DTC oscillations (closed red triangles) for long τ and large ǫ. To show that the observed decay

is not dominated by an irreversible process, we devise an approximate “unwrapping” sequence to

create an echo above the classical decay envelope. After N cycles of {τ−Xθ} (closed red triangles),

we switch to the second part of the echo sequence (see text) and increment N ′. The results of this

N ′ sequence are shown for τ = 192.5 µs, where clear echos are observable for both θ = 1.08π (a)

and θ = 1.16π (b), with N = {2, 6, 10} (open blue circles, green triangles, yellow diamonds). The

corresponding arrow and filled marker show the predicted time of the DTC echo maximum, i.e.,

where N ′ = N . For the case of the DTC sequence at θ = π (blue dots), we observe decay where

none is expected in the perfect, delta-function pulse model; the echoes do not rise above this θ = π

decay envelope. We examine this effect in Fig. 4.

mechanism for noninteracting spins [16]. If we start with a net magnetization vector aligned

along ẑ, then an Xπ+ǫ pulse will leave a component of the magnetization along the z axis

proportional to cos(ǫ). If the component of the magnetization in the transverse plane after

the pulse is assumed to dephase and be lost during the subsequent τ due to some variation in

local fields, we expect each Floquet cycle to reduce the observable magnetization by cos(ǫ),

leading to an exponential decay cosN(ǫ) after N Floquet cycles. In practice, our signals

seems to stay at or below the barrier imposed by this decay rate (compare Fig. 3, red versus

black).

To test whether magnetization is irreversibly lost during the decay of the DTC oscillations,

we devise a “DTC echo” sequence which attempts to “undo” the forward evolution of the

system during the original DTC sequence. In the original sequence {τ −Xθ}
N , the system

evolves under Hint for time τ , followed by a pulse rotation. To “undo” the rotation, we

simply apply a pulse rotation in the opposite sense, Xθ. To “undo” the effect of Hint

7



during τ , we first limit our attention to the homonuclear interaction HP,P
zz , and we borrow

a technique from the so-called “magic echo” experiment in NMR [18, 22], exploiting the

fact that a strong RF pulse along y reduces HP,P
zz to an effective internal Hamiltonian term

−1

2
HP,P

yy , where we define HP,P
φφ =

∑N
j>iB

P
ij(3Iφi

Iφj
− ~Ii · ~Ij) [16]. By allowing −1

2
HP,P

yy to act

for time 2τ and rotating the state with surrounding Xπ/2 pulses, the net phase evolution

becomes −HP,P
zz τ , opposite the original forward dipolar evolution +HP,P

zz τ . The final DTC

echo sequence is

{τ −Xθ}
N − (Xπ/2 − {Xθ − YΦ}

N ′

−Xπ/2), (2)

where Φ = ω12τ for a strong RF pulse of duration 2τ . In the language of the more

conventional Hahn spin echo sequence, the first part (N blocks) of this sequence generates

the “free induction decay,” while the second part (the rotated N ′ blocks) generates the signal

“after the π pulse” [18, 23]. If the second part of this sequence can undo the first part, then

we expect an echo to appear when N ′ = N . In Fig. 3, we show prominent echoes in the

magnetization for various values of N . The detection of these DTC echoes is evidence that

the original DTC sequence drives coherence to normally unobservable parts of the density

matrix, without being irreversibly lost due to interactions with an external thermal bath.

Note that even at θ = π, the signal decays (Fig. 3), which should not happen in the

delta-function pulse approximation. Moreover, this θ = π decay envelope appears to limit

the recovery of signal for θ 6= π, where we see that the DTC echoes are unable to cross this

barrier (Fig. 3). This may be also responsible for the echo peaks occurring earlier than their

expected locations. An obvious mechanism that could cause this is pulse imperfections;

however, our studies have shown their effects to be too small to explain the observed decay

[16].

In order to account for this decay, we reexamine the previously ignored effects of Hint

during the non-zero duration pulses. Experimentally, we explore this by using modified

versions of the DTC sequence, using different sets of pulse phases at θ = π. Defining

{α, β} ≡ {τ −απ − τ − βπ}
N , we expect little or no difference between {X,X}, {Y, Y }, and

{X, Y } for ideal delta-function pulses. However, Fig. 4(a) shows that while {X,X} and

{Y, Y } produce very similar results, {X, Y } yields a dramatically extended lifetime.

This result can be qualitatively understood when accounting for the non-zero pulse dura-

tion tp. During a pulse of phase X (Y), an effective internal Hamiltonian −1

2
HP,P

xx (−1

2
HP,P

yy )

acts for time tp [19, 20]. For {X,X}, a term proportional to −1

2
HP,P

xx is present in the aver-
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FIG. 4. (color online). Experimental pulses are of non-zero duration, which allows the internal

Hamiltonian to act. These actions, while small, produce significant effects, especially after many

Floquet cycles. At τ = 20 µs, pulse sequences {X,X} (black open squares) and {Y, Y } (red open

circles) decay much faster than the sequence {X,Y } (green open triangles). Signals are sampled

after each repeating block {α, β}.

age Hamiltonian; this term is −1

2
HP,P

yy for {Y, Y }. However, for {X, Y } this term is instead

proportional to −1

2
(HP,P

xx + HP,P
yy ) = +1

2
HP,P

zz [18], which commutes with the initial density

matrix. We explore the effect of nonzero pulse duration further in [16].

The results we have shown are strikingly similar to those described by Zhang et al.

[8] and Choi et al. [10], even though the spin Hamiltonian for our system is different in

interesting ways. We also explore a very large region in the (θ, τ) parameter space, and

observe DTC signatures across a remarkably broad range in τ . This occurs despite the

conventional wisdom that our experimental conditions should be even less conducive to

MBL than all prior DTC experiments [9, 12]. DTC oscillations like those observed in

this experiment can sometimes be explained as prethermal phenomena, but our system

seems to violate conditions for prethermalization [11, 16]. The DTC echo opens a new

window into the physics of these driven systems, and helps to clarify the nature of the DTC

oscillations. Further, we have shown that the interactions during the pulse of the DTC

sequence contribute to the decay of the oscillating signal. This is a practical barrier to

measuring the intrinsic lifetime of the DTC, which should be taken into account in future

studies.

In this work, we exploited both the long coherence times of our sample, and our ability

to use NMR pulse sequences to ‘edit’ the spin Hamiltonian. This suggests that NMR can
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be a useful probe of the physics of out-of-equilibrium, driven many-body systems.
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