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Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such
as protected quantum gates with relatively low overhead and robustness against imperfect mea-
surement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and
phase-flip noise in the 3D color code on the body-centered cubic lattice, assuming perfect syndrome
measurements. In particular, by exploiting a connection between error correction and statistical
mechanics, we estimate the threshold for 1D string-like and 2D sheet-like logical operators to be

p
(1)
3DCC ' 1.9% and p

(2)
3DCC ' 27.6%. We obtain these results by using parallel tempering Monte Carlo

simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical
models: the 4- and 6-body random coupling Ising models.

PACS numbers: 03.67.Pp, 03.67.Lx, 11.15.Ha, 75.40.Mg, 75.50.Lk

The two-dimensional (2D) surface code approach [1–
3] to building scalable quantum computers has desir-
able features: (1) geometrically local syndrome mea-
surements, (2) a high accuracy threshold and (3) fault-
tolerant Clifford gates with low overhead. Unfortunately,
the surface code is not known to admit a (4) fault-tolerant
non-Clifford gate with low overhead. The formidable
qubit overhead of state distillation [4, 5] for the necessary
non-Clifford gate motivates the quest for alternatives to
the surface code with all features (1)–(4).

Such alternatives may be sought in the general class of
topological codes [1, 2, 6–8], which includes the surface
code as a special case. By definition, topological codes
require only geometrically local syndrome measurements
and tend to have high accuracy thresholds. Topological
codes often admit some fault-tolerant transversal gates
(implemented by the tensor product of single-qubit uni-
taries), which have low overhead. However, no quantum
error-detecting code (whether topological or not), has a
universal transversal encoded gate set [9, 10].

Here we focus on the 3D topological color codes [11, 12]
closely related to the 3D toric code [13], which come
in two types. The stabilizer type has 1D string-like
Z and 2D sheet-like X logical operators, and a logical
non-Clifford gate T = diag(1, eiπ/4) is transversal. In
the subsystem type, there are 1D string-like X and Z
dressed logical operators, and all logical Clifford gates
are transversal. Moreover, in the subsystem color code
it is possible to reliably detect measurement errors in a
single time step [14, 15]. By fault-tolerantly switching be-
tween the stabilizer and subsystem color codes [12, 16],
one can combine the desirable features (1), (3) and (4).

In this work, we address feature (2) for the 3D color

codes by finding thresholds p
(1)
3DCC ' 1.9% and p

(2)
3DCC '

27.6% for phase-flip Z and bit-flip X noise, respectively.
Our results assume optimal decoders for independent X
and Z noise with perfect measurements, and thereby
give fundamental error-correction bounds against which
any decoder can be benchmarked [15, 17, 18]. These

thresholds are comparable to the analogous thresholds

for the cubic lattice 3D toric code: p
(1)
3DTC ' 3.3% and

p
(2)
3DTC ' 23.5% [19–21], but compare unfavorably to
p2DTC ' 10.9% for the square lattice 2D toric code [22].

Our approach extends techniques known for other
codes [3, 8, 23–28] in order to relate the 3D color code
thresholds to phase transitions in two new 3D statistical-
mechanical models: the 4- and 6-body random coupling
Ising models (RCIM). We use large-scale parallel tem-
pering Monte Carlo simulations [29] and analyze specific
heat, sublattice magnetization and Wilson loop operators
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FIG. 1. The disorder-temperature (p, T )-phase diagrams of
the 4-body (top) and 6-body (bottom) 3D random coupling
Ising models defined on the 3D body-centered cubic lattice
built of tetrahedra. The 4- and 6-body models have spins on
vertices and edges, respectively. The storage threshold pc can
be found as the intersection of the Nishimori line (blue line)
with the anticipated phase boundary (red dotted line).
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to map the relevant parts of the disorder-temperature
(p, T )-phase diagram; see Fig. 1. The 6-body RCIM is
an example of a lattice gauge theory with a local (gauge)
Z2 × Z2 symmetry, which makes this model both inter-
esting and numerically challenging to study.

3D stabilizer color code.— built of tetrahedra such
that its vertices are 4-colorable, i.e., vertices connected
by an edge are colored differently. An example of such a
lattice is the body-centered cubic (bcc) lattice obtained
from two interleaved cubic lattices; see Fig. 2(b). We
denote by ∆i(L) the set of all i-simplices of L. Then,
0-simplices of L are vertices, 1-simplices are edges, etc.
We place one qubit at every tetrahedron t ∈ ∆3(L). For
every vertex v ∈ ∆0(L) and edge e ∈ ∆1(L) we define op-
erators SX(v) and SZ(e) to be the product of either Pauli
X or Z operators on qubits identified with tetrahedra in
the neighborhood of the vertex v or edge e, namely

SX(v) =
∏

t∈∆3(L)
t⊃v

X(t), SZ(e) =
∏

t∈∆3(L)
t⊃e

Z(t). (1)

The 3D stabilizer [30] color code is defined by specifying
its stabilizer group [31]

S = 〈SX(v), SZ(e)|v ∈ ∆0(L), e ∈ ∆1(L)〉. (2)

Using the colorability condition one can show that S is
an Abelian subgroup of the Pauli group not containing
−I. The code space is the +1 eigenspace of all elements
of S and the lowest-weight logical X and Z operators of
the 3D color code are 2D sheet-like and 1D string-like
objects; see Fig. 2(a). In general, the color code can be
defined in d ≥ 2 dimensions on a lattice, provided it is a
(d+ 1)-colorable simplicial d-complex [16].

(b) (c)(a)

FIG. 2. (a) The 3D stabilizer color code has both 1D string-
like (red) and 2D sheet-like (blue) logical operators. (b) The
bcc lattice is constructed from two interleaved cubic lattices
by filling in tetrahedra (gray). Not all tetrahedra are depicted.
(c) The neighborhood of any vertex in the bcc lattice looks the
same — every vertex belongs to 24 edges, 36 triangular faces
and 24 tetrahedra. The bcc lattice is 4-colorable, i.e., every
vertex is colored in red, green, blue or yellow, and neighboring
vertices are colored differently.

Error correction in CSS codes.— Since the color code
is a CSS code [32], we choose to separately correct X-
and Z-type errors, which simplifies the discussion. We
also assume perfect measurements. For concreteness, we
focus on X-error correction; Z-errors can be analyzed
analogously [33].

The set of all Z-type stabilizers which return −1 mea-
surement outcomes is called a Z-type syndrome. Note
that any nontrivial Z-syndrome signals the presence of
some X-errors in the system. Correction of X-errors in
a CSS code is described by introducing a chain complex
[17, 34]

C2
∂2−→ C1

∂1−→ C0

X-stabilizers qubits Z-stabilizers
(3)

where C2, C1 and C0 are vector spaces over Z2 with bases
B2 = X-stabilizer generators, B1 = physical qubits and
B0 = Z-stabilizer generators, respectively. The linear
maps ∂2 and ∂1, called boundary operators, are chosen in
such a way that the support of any X-stabilizer ω ∈ C2 is
given by ∂2ω, and the Z-syndrome corresponding to any
X-error ε ∈ C1 can be found as ∂1ε. Note that ∂1◦∂2 = 0,
since any X-stabilizer has trivial Z-syndrome. One can
think of the boundary operators as parity-check matrices
HT
X and HZ of the CSS code. In the case of the 3D color

code, C2, C1, C0 are generated by vertices, tetrahedra,
and edges respectively, i.e., B2 = ∆0(L), B1 = ∆3(L)
and B0 = ∆1(L). The boundary operators are defined to
be ∂2v =

∑
∆3(L)3t⊃v t and ∂1t =

∑
∆1(L)3e⊂t e for any

v ∈ ∆0(L) and t ∈ ∆3(L).
Let ε, ϕ ∈ C1 be two X-errors with the same Z-

syndrome, ∂1ε = ∂1ϕ. We say that ε and ϕ are equiva-
lent iff they differ by some X-stabilizer ω ∈ C2, namely
ε + ϕ = ∂2ω. To correct errors, we need a decoder
— an algorithm which takes the Z-syndrome σ ∈ C0

as an input and returns a Z-correction ϕ restoring all
X-stabilizers to +1 outcomes, i.e., ∂1ϕ = σ. The de-
coder succeeds iff the actual error ε and the correction
ϕ are equivalent. An optimal decoder finds a represen-
tative ϕ of the most probable equivalence class of errors
ϕ = {ϕ+ ∂2ω|∀ω ∈ C2}.
Statistical-mechanical models.— In this section, we

provide a brief derivation of the connection between op-
timal error-correction thresholds and phase transitions
[3, 8, 23–28]. In particular, we derive two new statistical-
mechanical models relevant for the 3D color code.

We assume bit-flip noise, i.e., every qubit is indepen-
dently affected by Pauli X error with probability p. The
probability of an X-error ε ∈ C1 affecting the system is

pr(ε) =
∏
j∈B1

p[ε]j (1− p)1−[ε]j ∝
(

p

1− p

)∑
j∈B1

[ε]j

, (4)

where [ε]j ∈ Z2 denotes the j coefficient of ε in the B1

basis, ε =
∑
j∈B1

[ε]jj.
For a general CSS code family with the chain complex

in Eq. (3), the X-error correction threshold is the largest
pc such that for all p < pc the probability of successful
decoding goes to 1 in the limit of infinite system size

pr(succ) =
∑
ε∈C1

pr(ε)pr(succ|ε)→ 1. (5)

With the optimal decoder, the conditional probability
pr(succ|ε) equals 1 if ε belongs to the most probable error
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equivalence class consistent with the syndrome ∂1ε, and
0 otherwise. The probability of equivalence class ε is

pr(ε) =
∑
ω∈C2

pr(ε+ ∂2ω) ∝
∑
ω∈C2

e−2β(p)
∑
j∈B1

[ε+∂2ω]j ,

(6)
where we use Eq. (4) and introduce

β(p) = −1

2
log

p

1− p
. (7)

To rewrite Eq. (6), we use [∂2ω]j ≡
∑
i∈B2∧∂2i3j [ω]i

mod 2 and 1 − 2[ε + ∂2ω]j = (−1)[ε]j (−1)[∂2ω]j =

(−1)[ε]j
∏
i∈B2∧∂2i3j(−1)[ω]i . By introducing new (clas-

sical spin) variables si = (−1)[ω]i for all i ∈ B2, we can
replace the sum over ω ∈ C2 in Eq. (6) by a sum over
different configurations {si = ±1}, yielding

pr(ε) ∝
∑

{si=±1}

e−β(p)Hε({si}), (8)

where we introduce the Hamiltonian

Hε({si}) = −
∑
j∈B1

(−1)[ε]j
∏
i∈B2

[∂2i]j=1

si. (9)

We define the random coupling Ising model (RCIM)
to be a classical spin si = ±1 random model with
quenched couplings (−1)[ε]j described by Hε({si}) in
Eq. (9). The RCIM has two independent parameters:
disorder strength p (i.e., the probability of negative cou-
plings) and inverse temperature β. The partition func-
tion of the RCIM with disorder ε at temperature β−1

is

Zε(β) =
∑

{si=±1}

e−βHε({si}). (10)

Note that for the proportionality pr(ε) ∝ Zε(β) to hold
one requires β = β(p).

For the 3D color code, Eq. (9) leads to the following
two new models

HX
ε ({sv}) = −

∑
t∈∆3(L)

(−1)[ε]t sa

sb
sc

sdse

sf

, (11)

HZ
ε ({se}) = −

∑
t∈∆3(L)

(−1)[ε]t

sa

sb

sc sd

, (12)

relevant for X- and Z-error correction, respectively. Note
that HX

ε ({sv}) (respectively HZ
ε ({se})) contains 4-body

(6-body) terms, which are products of vertex (edge) spins
of every tetrahedron. We observe that for p = 0, i.e., the
case with no disorder, these two models are mutually
dual in the sense that the low-temperature expansion of
each model matches the high-temperature expansion of
the other [35]; see the Supplemental Material [36].

The Hamiltonian in Eq. (9) determines a thermal en-
semble of excitations in the statistical-mechanical model.

For HX
ε ({sv}) the excitations are 2D domain walls resid-

ing on a set of tetrahedra ϕ = ε+ ∂2ω ∈ C1, where these
walls terminate at the edges contained in ∂1ϕ = ∂1ε ∈ C0.
In the color code, this ensemble of domain walls corre-
sponds to the ensemble of possible X-errors which gener-
ate the same syndrome as ε, and the Boltzmann weight
of a wall configuration coincides with the probability of
the corresponding X-error configuration ϕ. Likewise, for
HZ
ε ({se}) the excitations are 1D strings terminating at

vertices in ∂1ε, corresponding to Z-errors which generate
the same error syndrome as ε.

To determine the storage threshold for the 3D color
code, we investigate the disorder-temperature (p, T )-
phase diagram of the RCIM in Eq. (9). In the ordered
phase, large fluctuations of domain walls (or strings) are
suppressed [3], and the free energy cost

∆λ(ε) = − logZε+λ(β) + logZε(β) (13)

of introducing any non-trivial domain wall λ ∈ ker ∂1 \
im ∂2 to the system at inverse temperature β with dis-
order ε should diverge in the limit of infinite system size
when averaged over all disorder configurations

〈∆λ〉 =
∑
ε∈C1

pr(ε)∆λ(ε)→∞. (14)

Correspondingly, in the color code, the error ϕ produces
a syndrome ∂1ϕ which points to a unique equivalence
class ϕ, so that the syndrome can be decoded success-
fully with high probability. Indeed, we show in the Sup-
plemental Material, pr(succ) → 1 for the error rate p
implies 〈∆λ〉 → ∞ for the RCIM at inverse temperature
β(p) and disorder strength p. Thus, by finding the criti-
cal point along the line defined by Eq. (7) (the Nishimori
line [37]) we obtain the threshold value pc.
Phase diagram.— We describe how to map out the

(p, T )-phase diagrams of the two RCIMs, HX
ε ({sv}) and

HZ
ε ({se}). The discontinuity in energy density across

a first order phase transition allows for straightforward
identification of the phase boundary in the regime of low
disorder. However, more reliable order parameters are
required to probe a (higher-order) phase transition close
to the critical point on the Nishimori line. Moreover,
an appropriate order parameter takes symmetries of the
model into account. Note that flipping a subset of spins
{si}i∈I , i.e., si 7→ −si for i ∈ I, is a symmetry if it leaves
the Hamiltonian describing the model invariant.

The 4-body RCIM in Eq. (11) has a global Z2×Z2×Z2

symmetry. Flipping spins on all red and blue vertices is
an example of a symmetry operation, since it leaves ev-
ery term of HX

ε ({sv}) unchanged. Due to this symmetry,
the total magnetization is not a good order parameter.
However, the sublattice magnetization of spins of a sin-
gle color is, as in the case of the spin model arising from
the 2D color code [26, 28]. Instead of using the sublat-
tice magnetization directly, more precise estimations are
obtained by considering the finite-size scaling of the spin-
spin correlation function [38]. Near the phase transition,
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FIG. 3. Results for the 3D 4-body (a)-(c) and 6-body (d)-(f) RCIMs. By finding peaks of specific heat cL for different system
sizes L and exploiting finite-size scaling we estimate for p = 0 the critical temperature of a phase transition in (a) and (d)
to be Tc = 8.77(2) and Tc = 0.918(3). (b) For p = 0.27 we identify Tc = 2.56(4) as the intersection of normalized spin-spin
correlation functions ξL/L for different L. (c) For p = 0.28 there is no indication of a phase transition. In (e) and (f) we check
if the Wilson loop operator W (γ) satisfies the perimeter law by plotting − log〈W (γ)〉/P (γ) as a function of perimeter P (γ) of
the square loop γ for different T and L = 10. Solid lines show a numerical ansatz aP (γ) + b+ c logP (γ) with fitting parameters
a, b, c. The parameter a allows to identify a phase transition; see the Supplemental Material [36]. (e) For p = 0.018 a change of
scaling signalizes a phase transition at T = 0.75(3), whereas (f) for p = 0.021 there is no indication that the system undergoes
a phase transition.

for fixed disorder strength p and temperatures T close to
the critical temperature Tc(p), the correlation length ξL
is expected to scale as

ξL(p, T )/L ∼ f(L1/ν(T − Tc(p))), (15)

where L is the linear system size, f is a scaling function
and ν is the correlation length critical exponent [39]. We
estimate Tc(p) by plotting ξL(p, T )/L as a function of
T for different L and finding their crossing point; see
Fig. 3(a)(b). If no crossing is observed, then we conclude
that there is no phase transition.

The 6-body RCIM in Eq. (12) describes a lattice gauge
theory with a local Z2×Z2 symmetry. Flipping spins on
edges from a single yellow vertex to all neighboring red
and blue vertices is an example of a symmetry operation;
see Fig. 2(c). Due to Elitzur’s theorem [40], the gauge
symmetry rules out existence of any local order parame-
ter. We define a Wilson loop operator [41, 42]

W (γ) =
∏
e∈γ

se, (16)

to be a product of edge spins along a loop γ ⊂ ∆1(L),
similarly as in Ising lattice gauge theory [35]. For W (γ)
to be gauge-invariant the loop γ can only be composed
of edges connecting vertices of two (out of four possible)
colors. The phase transition is identified by analyzing

scaling of the thermal expectation value of W (γ) aver-
aged over different disorder configurations

〈W (γ)〉 =
∑

ε⊂∆3(L)

pr(ε)
∑
{se}

W (γ)
e−βH

Z
ε ({se})

Zε(β)
. (17)

Namely, in the limit of large square loops [21, 23, 43],
− log〈W (γ)〉 scales linearly with the loop’s perimeter
P (γ) in the ordered (Higgs) phase, whereas in the dis-
ordered (confinement) phase it scales linearly with the
minimum area A(γ) enclosed by γ; see Fig. 3(d)-(f).

We find the (p, T )-phase diagrams of the 4- and 6-body
RCIM by performing parallel tempering Monte Carlo
simulations [29]; see Fig. 1. We test equilibration of
the system by logarithmic binning of the data; we define
the system to equilibrate when the last three bins agree
within statistical uncertainty [26, 28]. Since we simulate
systems of finite size, a careful analysis of finite-size ef-
fects is necessary. Additional details are provided in the
Supplemental Material [36], where we also study the re-
lated random plaquette Ising model to find an accurate

estimate of the 3D toric code threshold p
(1)
3DTC ' 3.3%.

Discussion.— The 3D color code is a zero-rate code,
thus from the quantum Gilbert-Varshamov bound [44–

46] we obtain the inequality H(p
(1)
3DCC) + H(p

(2)
3DCC) ≤ 1

relating the phase- and bit-flip thresholds, where H(p) =
−p log2 p−(1−p) log2(1−p) is the Shannon entropy. Our
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numerical estimates p
(1)
3DCC ' 1.9% and p

(2)
3DCC ' 27.6%

satisfy that constraint. In the Supplemental Material
[36], which includes Refs. [47–52], we show how to heuris-
tically estimate thresholds from the lattice parameters
and compare with the analogous argument for the toric
code.

The X-stabilizers detecting Z-errors are the same for
the 3D stabilizer and subsystem color codes. Since the
subsystem code has X- and Z-generators of identical sup-
port, its phase- and bit-flip thresholds for perfect mea-

surements and optimal decoding are both equal to p
(1)
3DCC.

For the 3D color code on the bcc lattice, the threshold

of the (efficient) projection decoder p
(1)
proj ' 0.75% [18] is

less than a half of p
(1)
3DCC, justifying a search for better

decoders.

We hope our work motivates further study of the 3D
random coupling Ising models. We conjecture the exis-

tence of a spin-glass phase [53] in the 6-body RCIM. A
future extension of this work might incorporate measure-
ment errors which would require the study of 4D RCIMs
and thus use more computational resources. If success-
ful, this research program could provide a deeper under-
standing of single-shot error correction [14, 15] from the
standpoint of statistical mechanics.
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