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Unlike random potentials, quasi-periodic modulation can induce localisation-delocalisation tran-
sitions in one dimension. In this article, we analyse the implications of this for symmetry breaking
in the quasi-periodically modulated quantum Ising chain. Although weak modulation is irrelevant,
strong modulation induces new ferromagnetic and paramagnetic phases which are fully localised
and gapless. The quasi-periodic potential and localised excitations lead to quantum criticality that
is intermediate to that of the clean and randomly disordered models with exponents of ν = 1+,
and z ≈ 1.9, ∆σ ≈ 0.16, ∆γ ≈ 0.63 (up to logarithmic corrections). Technically, the clean Ising
transition is destabilized by logarithmic wandering of the local reduced couplings. We conjecture
that the wandering coefficient w controls the universality class of the quasi-periodic transition and
show its stability to smooth perturbations that preserve the quasi-periodic structure of the model.

PACS numbers:

Sufficiently strong quasi-periodic modulation can drive
a localisation transition in one dimensional wires, as was
first shown by Azbel, Aubry and André [1–4]. Insofar
as the unmodulated wire is described by a critical Dirac
theory, this suggests that strong modulation ought to be
able to localise other quantum critical points. On the
other hand, if the critical point mediates the develop-
ment of long-range order, it must have an extended mode
at zero energy. At the quantum Ising transition in the
presence of disorder, this tension gives rise to infinite ran-
domness physics [5–13]. In this article, we show that suf-
ficiently strong smooth quasi-periodic modulation drives
the quantum Ising transition into a new quasi-periodic
(QP) Ising universality class. The properties of this uni-
versality class are intermediate between those of the clean
and infinite randomness cases, and are robust to smooth
perturbations that preserve the QP structure.

The discovery and growth of quasicrystals [14–16] mo-
tivated the study of critical systems modulated by dis-
crete quasi-periodic substitution sequences [17–25] in-
cluding the quantum Ising chain [26–42]. However, re-
cent optical lattice experiments naturally realise smooth
quasi-periodic modulation [43–47]. Whilst such modu-
lation has been investigated in related models [1–4, 48–
63], Luck’s analysis [34] of wandering showed smooth QP
modulation to be perturbatively irrelevant at the quan-
tum Ising transition. This deterred further study of the
strongly modulated regime, whose physics we here un-
cover.

The generic QP transverse field Ising model (TFIM)
in one dimension has the Hamiltonian:

H = −1

2

∑
j

J(Qj)σxj σ
x
j+1 + Γ(Qj)σzj , (1)

where J(θ) and Γ(θ) are smooth 2π-periodic functions.
The modulation is quasi-periodic if the wavelength 2π/Q
is an irrational multiple of the lattice length a = 1. Our
general results apply to a large class of irrational wavevec-

FIG. 1: Phase diagram. The hatched region defines
the weakly modulated regime with no weak coupling
(J(Qi),Γ(Qi) > 0 ∀i). The usual gapped ferromagnetic (blue)
and paramagnetic (green) phases appear in this regime, sepa-
rated by a continuous transition in the clean Ising class (seg-
ment AB). At stronger modulation, we find two new modu-
lated gapless phases: the QP-PM (yellow), and the QP-FM
(red). The continuous transitions out of these phases (double
and dashed lines) are in the new QP Ising class.

tors (see Supp. Inf.); numerical results use the Golden
mean, Q/2π = τ ≡ (1 +

√
5)/2. The QP model is best

understood as the limit of a sequence of commensurate
models with wavevectors Q̃ = 2πp/q, for coprime integers
p, q such that p/q → Q/2π [73]. The period q is then the
finite length scale which controls scaling behavior.

Using the Jordan Wigner transformation, Eq. (1) maps
on to a free Majorana chain [64]:

H =
i

2

∑
j

J(Qj)γ2j+1γ2j+2 + Γ(Qj)γ2jγ2j+1 (2)

where γi are Majorana fermion operators (for conven-
tions and details, see Ref. [65]). For an open chain in
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the Ising ordered phase, there are exponentially localised
zero modes bound to the system edges. The zero mode
wavefunction at the left edge is,

ψ0
2j ∝

∏
i<j

∣∣∣∣Γ(Qi)

J(Qi)

∣∣∣∣ ≡ exp

∑
i<j

δ(Qi)

 (3)

where δ(Qi) = log |Γ(Qi)/J(Qi)| is the local reduced cou-
pling. The equation [δ(Qi)] = 0 determines the phase
boundary, where [·] denotes spatial averaging. For QP
modulation, the phase boundaries are independent of Q
as the spatial average [·] reduces to a phase average [·]θ.

The couplings in the simplest QP TFIM arise from a
single tone:

J(Qi) = J̄ +AJ cos(Q(i+ 1/2) + φ)

Γ(Qi) = Γ̄ +AΓ cos(Qi+ φ+ ∆) (4)

where the phases φ and ∆ shift the couplings with re-
spect to the lattice. We highlight an interesting slice of
the phase diagram in Fig. 1 where J̄ = Γ̄. There are
four phases. The usual gapped Ising PM and FM phases
arise in the weakly modulated regime (J̄ = Γ̄ > AJ , AΓ)
at the top of the figure. Two new phases appear at
strong modulation, when the couplings take both posi-
tive and negative signs: a QP-FM with modulated ferro-
and anti-ferromagnetic correlations, and a QP-PM with
modulated transverse magnetization.

The two QP phases are gapless with localised excita-
tions at all energies. Heuristically, this is a consequence
of weak couplings (of order 1/q) which occur when Qi
in Eq. (4) samples near the zeros of J(θ) or Γ(θ). The
weak couplings nearly cut the chain which localises ex-
citations on either side. In turn, excitations localised on
the weak links have arbitrarily low energy as q →∞. We
note that the gapless excitations are not associated with
rare regions, unlike in the Griffiths-McCoy phase of the
disordered Ising chain [5, 6, 66].

In this letter we focus on the phase boundary AJ = AΓ,
segment ABC in Fig. 1, (while the broader phase dia-
gram is studied in Ref. [67]). All of the points on this line
are Ising self-dual and accordingly critical. QP modula-
tion is perturbatively irrelevant at the clean Ising tran-
sition [34]. Our numerics (not shown) confirm that all
critical exponents in the weak modulation regime (seg-
ment AB, Fig. 1) are consistent with clean universal-
ity. The difference between the unmodulated model and
the weakly modulated model become apparent only at
high energy: Fig. 2 shows that the low energy excita-
tions are extended (red) up to a finite cutoff energy Λ,
above which they become localised (blue). This mobil-
ity edge collapses (Λ → 0) at the multicritical point B.
On the segment BC, all finite energy excitations are lo-
calised, consistent with the localisation of the adjacent
QP-PM and QP-FM phases. This is our first qualitative

FIG. 2: Localisation properties of excitation spectrum on line
ABC. The low-energy excitations on the segment AB are
extended (red) up to a finite energy cut-off Λ, above which
they are localised (blue). The cutoff Λ vanishes at the multi-
critical point B so that all finite energy excitations are lo-
calised on the segment BC. The color quantifies the scaling
of the inverse participation ratio I =

∑
i |ψi|

4 ∼ q−a; a = 0
(1) for localised (extended) states. Parameters: q = 233,
∆ = 42π/233, φ =

√
2

indication that the critical properties of the QP and clean
transitions are quite different.

Before turning to the detailed properties of the QP
Ising transition, we briefly review single parameter scal-
ing. At clean critical points, coarse-grained observables
are scale free [68]. Single parameter scaling posits that a
single length scale and corresponding time scale diverge
at the transition,

ξ ∼ [δ]−ν , ξt ∼ ξz (5)

where ν and z are the correlation length and dynamical
critical exponents, respectively. These control the long
distance and long time correlations in the vicinity of the
critical point. For example,

[〈σxi (t)σxi+r(0)〉] ∼ 1

|r|2∆σ
C(r/ξ, t/ξt) (6)

where ∆σ is a scaling dimension and C a scaling function.
These are both part of the universal data of the critical
point. It is well known that the scaling ansatz holds at
the clean Ising transition.

In the disordered and QP transitions, the scaling
ansatz needs to be refined. The spatially averaged corre-
lation functions satisfy scaling in the form of Eq. (6) with
a single mean correlation length ξ. However, the typical
correlation functions may decay on a shorter, but still di-
vergent, length scale ξtyp ∼ [δ]−νtyp � ξ. Fisher [10] first
emphasized this in the disordered case, where νtyp = 1
while ν = 2. In the QP case, we will find a much weaker
logarithmic separation between ξtyp and ξ.
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An additional wrinkle for the disordered and QP Ising
transitions is that they separate phases in which all ex-
citations are localised. The localisation length ξloc is a
function of energy ε and deviation [δ] which must diverge
as [δ], ε→ 0. By scaling, we can compute z from the en-
ergy dependence of ξloc and ν from its [δ] dependence.
Henceforth, we drop the subscript from ξloc as it coin-
cides with ξ where they are both defined.

We now turn to analytic and numerical computation
of the critical properties of the QP Ising transition.

Typical correlations— We begin with the exponent
that controls the decay of the zero energy wavefunction
(Eq. (3)) across a region of size `:

S`(i) ≡ log

∣∣∣∣∣ψ
0
2(i+`)

ψ0
2i

∣∣∣∣∣ =

i+`−1∑
j=i

δ(Qj) (7)

As the excitation mode with the longest localisation
length, this controls the decay of long range spin-spin
and fermion-fermion correlations. The typical correla-
tion length follows immediately from evaluating the typ-
ical exponent controlling decay: [S`] = `[δ] ∼ `/ξtyp.
From Eq. (5) this implies νtyp = 1.

Mean correlations— The spatial modulation induces
fluctuation in the exponent S`(i), which are characterized
by the scale dependent variance (‘wandering’),

σ2(S`) = [S2
` ]− [S`]

2. (8)

If the wandering σ > |[S`]|, then the system has a density
of regions of size ` in which it is locally in the opposite
phase. Thus, the spatially averaged correlations at this
scale cannot determine the global phase; this general-
izes the Harris-Luck instability argument [69, 70] to the
strong modulation regime. Furthermore σ(Sξ) ∼ |[Sξ]|
defines the mean correlation length ξ above which the
global phase is determined. As [δ]→ 0, ξ diverges faster
than ξtyp if the wandering grows with l.

For disordered chains, the exponent S` undergoes a
random walk so that σ ∼

√
`. In the QP chain, the long-

range correlations of the spatial modulation produce a
more complicated non-monotonic wandering (see Supp.
Inf.). In particular, there are exponentially separated
special lengths ` (the convergents of Q/2π) at which σ is
anomalously small. Nevertheless, for typical large `, the
wandering σ2 is very close to its Cesaro average:

1

`

∑̀
`′=1

σ2(S`′) ∼
{
c if |J(θ)|, |Γ(θ)| > 0
w log ` otherwise

(9)

The two cases in Eq. (9) are physically distinguished by
the presence of weak couplings, and correspond to seg-
ments AB and BC in Fig. 1, respectively. Here, c is an
l-independent constant and we pithily dub w the logarith-
mic wandering coefficient (see Supp. Inf. for derivation).
Generically, this coefficient only depends on the wavevec-
tor Q and number and order of the zeros within a period

of the coupling functions. We conjecture that w uniquely
parametrizes the family of QP Ising transitions.

The correlation length exponent follows immediately
from the coarse grained wandering described by Eq. (9).
On segment AB, ν = 1 and the mean and typical corre-
lations do not separate. This is consistent with AB being
in the clean Ising universality class [34]. On segment BC,
the mean correlation length is logarithmically enhanced,

ξ ∼ [δ]−1 log1/2(1/[δ]) (10)

compared to ξtyp (i.e., “ν = 1+”).
Dynamical exponent— The dynamic properties show

more dramatic signatures of the change in universality.
Treating the secular equation of the Hamiltonian (2) to
leading order in the wandering of S`, we find,

z ≈ 1 + w (11)

This follows from estimating the scaling of the bandwidth
of the lowest band with period q (see Supp. Inf.) [74]. For
the Golden mean, Q/2π = τ , the wandering coefficient

w = 2π2

15
√

5 log τ
≈ 1.2 [71], which produces an estimate

z ≈ 2.2.
This estimate of z neglects spatial correlations of the

wandering, higher order moments and the deterministic
deviations of σ(S`) from its Cesaro average. We are thus
unable to detect multiplicative logarithmic corrections to
the dynamical scaling which are suggested by Eq. (10).
All results which follow are only valid up to the possibility
of such corrections.

Figure 3 shows three different numerical measurements
of z which collectively verify both single parameter scal-
ing and universality. Panels (a) and (b) probe dynamical
scaling through the φ,∆ averaged integrated density of
states n(ε) ∼ ε1/z at asymptotically vanishing and finite
energy scales, respectively. With periodic modulation q,
the maximum energy ε0 of the lowest miniband satisfies
n(ε0) = 1/q. This implies ε0 ∼ q−z; panel (a) confirms
this power law holds with exponent z ≈ 1.9 for system
sizes over 5 orders of magnitude up to q ≈ 106. Panel (b)
shows that the same exponent governs the scaling of n(ε)
with ε up to finite energy. Here, n(ε) is extracted from
the histogram of energy levels from 104 diagonalisations
at size q = 4181 across sampled values of φ,∆. Both
panels collapse data from a series of points along the BC
phase boundary, consistent with universality.

We extract ξ−1(ε) from a least squares fit to the rela-
tionship

log
[∣∣ψi(ε)ψ̄i+r(ε)∣∣] = −rξ−1(ε) + const (12)

where ψi(ε) is the eigenmode at energy ε for systems of
size q = 1597. We again see evidence of universality along
the phase boundary.

In all three panels of Fig. 3 the visible deviation from
pure power laws reflect deterministic modulation. The
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FIG. 3: Dynamical scaling at the QP Ising transition: (left) The maximum energy of the lowest band [ε0]φ,∆ scales as a power

law q−z over 5 orders of magnitude (mean over 5000 φ,∆ samples at each Fibonacci length). (inset) Least squares fit exponent

z as a function of parameter along the phase boundary. (centre) The integrated density of states [n(ε)]φ,∆ ∼ ε1/z over 7 orders
of magnitude in energy at the largest size available (q = 4181). (right) The inverse localisation length [1/ξ(ε)]φ,∆ is linearly
proportional to n(ε), consistent with single parameter scaling. The deviations from the central trend show sharp features at
the log-periodically spaced convergents of the golden ratio τ (vertical dashed lines). In all panels, the measurements are shown
at 5 different values of Γ̄/AΓ on segment BC of Fig. 1, indicating universality. Standard errors are smaller than point size;
deviations from power law trends are deterministic and due to the QP modulation.

phase averaging of various quantities reduces the devi-
ations from the central trends but does not completely
suppress them. We expect deviations from pure power
laws due to rare values of l at which σ(S`) deviates sig-
nificantly from its Cesaro mean (see Eq. (9)). These spe-
cial values are marked by dashed lines in panel (c) where
they correlate with atypically delocalised excitations.

The presence of these special points leads us to con-
jecture that the single parameter scaling forms, eg. in
Eq. (6), hold up to a non-universal multiplicative O(1)
function. That is, the scaling form provides the enve-
lope for these O(1) fluctuations. A consequence of this
hypothesis is that the critical exponents are well-defined
as q → ∞ but the convergence of finite-size numerical
estimates is only O(1/ log q). This is consistent with the
scatter in the inset of panel (a) in Fig. 3.

Scaling dimensions— The equal time correlators at
the QP Ising transition decay with a faster power law
than at the clean Ising transition, but slower than at
infinite randomness. Fig. 4 shows the excellent finite-
size scaling collapse of the mean equal time spin corre-
lator [〈σxi σxi+r〉]i,φ,∆ at the QP transition. Using data
from different points on the QP transition line we ex-
tract ∆σ ≈ 0.16 (see Eq. (6)). We find similarly enhanced
value of the scaling dimension of the Majorana fermions
∆γ ≈ 0.63 (data not shown). In contrast, for the clean
TFIM ∆σ = 0.125, ∆γ = 0.5, and for the random TFIM
∆σ = (3−

√
5)/4 ≈ 0.19, ∆γ ≈ 1.1 [10, 72].

The QP critical correlations are observed on length
scales r < q; for r > q, the system is actually periodic
and we recover clean Ising correlations [75]. In Fig. 4,
this is presaged by the small upturn near r = q.
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FIG. 4: Finite size scaling of spin correlations: (main) The
average spin correlations q2∆σ [〈σxi σxi+r〉]i,φ,∆ collapse when
plotted versus fractional separation r/q for critical dimen-
sion ∆σ ≈ 0.16 at (J = Γ)/AJ = 0.5. (inset) Least median
deviation fit exponent ∆σ is stable along the segment BC
consistent with universality.

Discussion— Weak quasi-periodic modulation is well-
known to be perturbatively irrelevant at the clean Ising
transition [34]. We have shown that sufficiently strong
modulation destabilizes this transition and drives the
TFIM into a new spatially modulated QP Ising transi-
tion. Like in the infinite randomness case, the low energy
excitations are localised throughout the critical fan, al-
though with a power law diverging localisation length as
ε → 0. The exponents of the QP Ising transition lie be-
tween their clean and disordered counterparts. The most
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dramatic signatures of this transition are in the localised
dynamics and larger specific heat as compared to the
clean case.

Our results rely on the emergence of logarithmic wan-
dering with coefficient w describing the dominant long-
distance fluctuations of the order. We conjecture that
w controls the universal content of a family of QP Ising
transitions. As w is only a function of wavenumber Q
and the number and order of the zeros of J(θ),Γ(θ), it fol-
lows that the critical properties are insensitive to smooth
perturbations which preserve the wavenumber. This is
investigated in Ref. [67]. We have provided numerical
evidence for this universality by varying couplings along
the boundary BC.

Remarkably, logarithmic wandering arises without
weak couplings when J(θ),Γ(θ) have step discontinuities.
Technically, this follows from the 1/k tails in the Fourier
transform of δ(θ). As the size of the steps controls w,
we can realize a large family of QP Ising transitions with
tunable exponents in such models. The quasi-periodic
substitution sequences studied in Refs. [26–39, 42] corre-
spond to choosing J(θ),Γ(θ) to be certain square waves.
Though in these models there is no concomitant locali-
sation of excitations, mutatis mutandis, our analysis ap-
plies: generically these models have the logarithmic wan-
dering of Eq. (9), and power law criticality intermediate
to the clean and random cases [34, 67, 70].

The stability of the QP Ising transitions to the intro-
duction of interactions is an open question. On the one
hand, interactions which effectively lift weak couplings
could destroy the log wandering. On the other hand, the
example of step modulation suggests that weak couplings
are not strictly necessary for modified criticality.
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[38] F. Iglói, L. Turban, D. Karevski, and F. Szalma, Physical

Review B 56, 11031 (1997).
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