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Abstract

The physical causes for the strong stabilizing effect of finite plasma β on ion-temperature-

gradient-driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear

gyrokinetic simulations. The primary contribution stems from a resonance of frequencies in the

dominant nonlinear interaction between the unstable mode, the stable mode, and zonal flows,

which maximizes the triplet correlation time and therefore the energy transfer efficiency. A modifi-

cation to mixing-length transport estimates is constructed, which reproduces nonlinear heat fluxes

throughout the examined β range.
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Thermal losses caused by turbulence are a major impediment to achieving controlled

fusion in magnetic confinement devices. While losses can be limited through the design of

large-scale devices, the cost increases commensurately, and transport control in the form of

an edge transport barrier is still required. Barrier and transport control strategies require a

thorough understanding of the turbulent state that develops from plasma instabilities. A key

milestone in understanding turbulence (and a means for finding successful control strategies)

has been the development of models capable of predicting turbulent plasma behavior and its

transport. Part of this effort is to incorporate the physics insights gained into more practical

reduced models.

One operating regime, desirable for fusion because it raises the fusion energy gain and

enhances self-generated confining currents, is high β, where β = 8πne0Te0/B
2

0
and ne0,

Te0, and B0 are equilibrium values of electron density, temperature, and magnetic field,

respectively. This regime involves electromagnetic fluctuations, and is of additional interest

because it exposes shortcomings in both the understanding of turbulent transport and in

reduced models used for producing quick predictions of turbulent flux levels. The most

familiar examples of the latter are quasilinear mixing-length transport models.

The impact of β on confinement is not entirely clear, with different experiments showing

different scalings [1–3]. Moreover, the effect of β on different microturbulence regimes varies,

decreasing transport in ion-temperature-gradient-driven (ITG) turbulence, while increasing

transport in trapped-electron-mode (TEM) turbulence [4–7]. Fast ions can further reduce

ITG turbulence[9, 10]. Note that here, electromagnetic effects refers to the sum of all non-

equilibrium finite-β physics, including the direct impact in Ampère’s law from the plasma

current and the effect on fluctuations by particle streaming along perturbed fields.

A difficult aspect of the reduction of ITG turbulence with β is that it cannot be ex-

plained by the effects of the instability alone. This is a problem for quasilinear transport

models, which are based on the instability’s properties. Quasilinear transport models are

semi-heuristic, with fluxes constructed dimensionally from the instability growth rate and a

fluctuation scale, but with an overall level set from a nonlinear simulation[11, 12]. Different

quasilinear models are distinguished by their refinements to this approach[13, 14]. The at-

tractiveness of quasilinear models lies in their low computational cost compared to nonlinear

simulations. However, they make implicit assumptions about the saturation physics, and

one cannot generally predict their validity. The quasilinear electrostatic ion heat flux Qes

i
in
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normalized units for tokamak geometry[12, 15, 16]:

Qes

i = ωT i C
∑

k

wkγk
〈k2

⊥〉
(1)

〈k2

⊥〉 = k2

y

(

1 + ŝ2
∫

ϑ2|Φk(ϑ)|
2dϑ

∫

|Φk(ϑ)|2dϑ

)

, (2)

is described by Fick’s law as a diffusion coefficient multiplied by the normalized ion

temperature gradient ωT i = −(R0/Ti0)(dTi0/dx), R0 is the major radius, x is the radial co-

ordinate, and Ti0 is the ion temperature. The diffusion coefficient depends on a scalar model

constant C, the linear growth rate spectrum γk, and an effective perpendicular wavenum-

ber 〈k2

⊥〉. The latter depends on the binormal wavenumber ky, normalized magnetic shear

ŝ = (r0/q0)(dq/dx), where q0 is the safety factor and r0 is the radial coordinate, and the

eigenmode potential Φk(ϑ), where ϑ is the ballooning angle. The model is weighted by

wk = Qes

i,k|lin/n
2

i,k|lin, where Qes

i,k|lin is the heat flux generated by the unstable eigenmode at

wavenumber k and n2

i,k|lin is the square of the ion density of the same mode.

Despite their simplicity, quasilinear estimates show good agreement with nonlinear pre-

dictions for many parameter scalings, including temperature gradients, temperature ratio,

collisionality, and effective charge [16–18]. However, in the case studied here, the above

quasilinear model predicts only a 50% reduction in transport between low and high β com-

pared to a 95% reduction seen in nonlinear simulations. The quasilinear model’s failure to

accurately predict electromagnetic stabilization indicates that it does not include changes

to the underlying saturation physics with β.

To understand the effect of β on saturated ITG turbulence, a series of diagnostic mea-

surements in gyrokinetic simulations are performed to characterize the role of stable modes,

including measurements of free energy production, nonlinear transfer, and dissipation. Sta-

ble modes are important in turbulence when their levels are sufficient to impact saturation.

This generally occurs when there are stable modes with damping rates comparable to the

growth rate, a condition fulfilled in numerous systems [19, 20]. The extent to which stable-

mode effects can be incorporated into reduced transport models is studied here for the first

time. All simulations were carried out using the gyrokinetic code Gene [26, 27]. We use

parameters with a single unstable ITG mode for each perpendicular wave vector in the un-

stable range. The two-dimensional scan in β and ωT i follows parameters in Ref. [6]. If not
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labeled otherwise, all plots are for ωT i = 8, though conclusions hold for all temperature

gradients investigated here (ωT i = 6, 7, 8).

The free energy for species j is given by [21]

Ek = Re
{

∫

dzdv
nj0Tj0

Fj0

[

gjk +
qjFj0

Tj0

χjk

]∗

gjk

}

, (3)

where −π ≤ z < π is the parallel coordinate, Fj0 is the background Maxwellian distri-

bution, qj is the species charge and gjk = fjk +
2qj

mjvTj
v‖Ā‖Fj0 is the modified distribution

function, depending on the distribution function fjk, the species mass mj , the thermal ve-

locity of the species of interest vTj , the velocity parallel to the magnetic field v‖, and the

parallel component of the gyroaveraged magnetic vector potential Ā‖. The modified poten-

tial χj = Φ̄−vTjv‖Ā‖ depends on the gyroaveraged potential Φ̄. For β ≪ 1 parallel magentic

fluctuations δB‖ are small and neglected here.

Gyrokinetic models have many eigenmodes at every wavenumber whose nonlinear exci-

tation can introduce scalings outside the normal dependencies of quasilinear theory. These

eigenmodes, which span the phase space of velocity and parallel displacement, are roots of

the linear gyrokinetic operator. Spectral energy transfer couples eigenmodes through the

E×B nonlinearity, which transfers energy within wavenumber triplets according to the con-

dition k− k′ = k′′. The energy transfer rate to Fourier wavenumber k = (kx, ky) due to

coupling with k′ and k′′ is

Tk,k′ = 2Re
{

∫

dzdv
nj0Tj0

Fj0

[

gjk +
qjFj0

Tj0

χjk

]∗
((k× k′) · b̂)

[

χj(k
′)gj(k

′′)
]}

. (4)

This function is decomposed so that it tracks transfer to individual eigenmodes, revealing

that electrostatic ITG turbulence saturates through zonal-flow-mediated energy transfer to

higher radial wavenumbers and stable modes at the same scales as the instability [22–24].

Zonal flows [5] and stable modes [25] are known to be susceptible to finite-β effects, hence

the decomposition of Tk,k′ is analyzed to determine their role in saturation.

The inclusion of electromagnetic effects does not qualitatively change the saturation mech-

anisms. From the decomposition of Eq. (4) for the wavenumbers that have the highest energy

injection rate, which are responsible for the most flux, roughly 90% of the energy transfer

is mediated by fluctuations at the zonal wavenumber ky = 0. Several percent of this energy

is deposited into the zonal mode and the rest going to the higher-kx mode. Energy transfer
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FIG. 1. (Color online) Zonal-flow-catalyzed energy transfer to unstable modes T 1
ZF

(red circles)

and stable modes T s
ZF

(black diamonds) at kyρs = 0.4 as a function of radial wavenumber.

to the unstable and stable eigenmodes at the higher-kx mode in the triplet are comparable.

The large number of stable modes makes tracking their individual amplitudes numerically

infeasible, and the effects of stable modes on the turbulence are complicated by their widely

differing damping rates and mode structures, as well as mode nonorthogonality. A simpler

analysis technique is to decompose the distribution function at a wavenumber into the

unstable mode and a remainder spanned by stable modes.

Figure 1 shows the energy transfer rate to the higher-kx mode due to coupling to a zonal

mode responsible for significant energy transfer with kx = 0.083, split into transfer to the

unstable eigenmode T 1

ZF
and the remainder T s

ZF
of the combined stable modes. In Eq. (4),

this is equivalent to choosing k′ = (0.083, 0) and decomposing gk into the unstable mode

and a remainder spanned by stable modes. Energy transfer rate to stable modes is negative

for the lowest kx wavenumber because nonorthogonality enhances energy production; this

is described later in the section on effective growth rates. The decline in energy transfer

rate is related to stable mode dissipation, which can be measured by summing over all the

couplings, and is approximated here with a sum over zonal couplings. At ky = 0.4, stable

modes dissipate 70% of the energy produced by the unstable modes up to the end of the

unstable range at kx = 0.25, while at ky = 0.2, their net effect enhances energy production

by 20% in the same range.

Individual terms of the nonlinearity make different contributions to the saturation of the

instability. The free energy [see Eq. (3)] is the sum of terms proportional to ‖g‖2/F0 and χ∗g,

an entropy-like and a wave-energy term, respectively. Transfer of entropy (∝ gkχk′gk′′) was

found to be larger by more than an order of magnitude than that of field-energy (∝ χkχk′gk′′)
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FIG. 2. (Color online) Temperature gradient dependence of the unstable mode fraction P(gnl, glin)

at two wavenumbers in the saturated turbulent state. Plotted are: β = 0.01% (black circles),

β = 0.25% (red squares), β = 0.5% (blue triangles), and β = 0.75% (magenta diamonds). The two

wavenumbers are kyρs = 0.2 (solid line) and kyρs = 0.4 (dashed lines).

0.2 0.4 0.6
kyρs

0.0

0.2

0.4

γ
/
(c

s/
R

0
)

−0.2
0.0 0.8

FIG. 3. (Color online) Spectrum of the nonlinear γeff (solid lines) and the linear γITG (dashed

lines) at β = 0.01% (black circles) and β = 0.75% (magenta diamonds).

at all β. This mirrors the electrostatic case, where entropy is similarly larger than wave-

energy [28]. However, the wave-energy contribution grows with β.

The catalytic zonal mode χk′ of the nonlinearity (k
′
y = 0) can be split into electrostatic and

electromagnetic components proportional to Φ̄ and Ā‖. Energy transfer can be decomposed

similarly. Energy transfer from the electromagnetic term (∝ gk ¯A‖,k′gk′′) was found to scale

with β, and to generally be negative several percent of that from its electrostatic counterpart

(∝ gkΦ̄k′gk′′).

The projection of the turbulent distribution function gnl onto the linearly unstable ITG

eigenmode glin determines the extent to which the turbulence is represented by the unstable

mode. The projection is given by
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P(gnl, glin) =
‖gnl(z,v) · glin(z,v)‖

‖gnl‖‖glin‖
. (5)

The projection can take values between 0 and 1, with 0 meaning the distribution function

is perfectly described by a sum of stable eigenmodes, while for 1 it is perfectly described by

the unstable eigenmode.

Figure 2 shows the time average of P(gnl, glin) at two wavenumbers as a function of ωT i

and β. The mode at ky = 0.2 is around the peak in transport, while ky = 0.4 is closer to

the peak in growth rate. Stable mode excitation is enhanced with β and depends strongly

on perpendicular wavenumber, consistent with the results depicted in Fig. 1. The turbulent

distribution function at low ky resembles the unstable mode, decreasing its corresponding

contribution from 75% to 60% as β increases from 0.01% to 0.75%. At higher ky, the unstable

mode contribution changes from around 40% to 35% over the same range in β.

Measuring the stable mode fraction alone misses the effect of stable modes on energy

production and dissipation, which cannot be inferred from amplitude alone as many modes

simultaneously make differing contributions. The normalized energy production rate pro-

vides a quantitative measure of the net effects of stable modes on energy.

For energy production, consider an effective nonlinear growth rate defined as

2γeff =
dEk/dt|NC

Ek

, (6)

where dE/dt|NC represents the energy change arising from nonconservative terms [29–31],

which can be compared directly to the growth rate of the unstable mode γITG for a measure

of the role of stable modes in saturation. If stable modes are not excited in saturation, the

effective growth rate γeff is equal to γITG.

Figure 3 compares γeff with γITG at two β values. Near ky = 0.1, i.e., around the peak

in transport and energy production, γeff follows and even slightly exceeds γITG. Where γeff

exceeds γITG, the stable mode contribution boosts energy production by increasing g∗kikyχk.

Higher wavenumbers show decreased γeff , with net energy dissipation in the tail of the

linearly unstable range. The relative change mimics the unstable mode proportion; where

the distribution function is well-described by the unstable mode, γeff follows γITG closely,

while increased stable mode excitation at higher wavenumber brings γeff down significantly.

While stable modes and their effect on energy are always seen to be important in saturation,
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their impact does not change much with β. The increase in stable mode excitation is only

equivalent to a decrease in growth rate of 10−20%, compared to the 90% reduction relative

to quasilinear flux, so increased stable mode excitation is only a secondary player in the heat

flux β scaling.

The direction and magnitude of energy transfer depends on the relative phase between

modes within a triplet; the time-averaged transfer depends on their correlation. Eddy-

damped quasi-normal Markovian closures [32] predict that energy transfer rates are propor-

tional to Ĝτ , where Ĝ depends on coupling coefficients and products of energy quantities,

and the triplet correlation time τ = −i[ω̂′′ + ω̂′ − ω̂∗]−1 relates to the time modes spend in

phase[29, 33, 34]. A recent analytical calculation of saturation of toroidal ITG in a fluid

model [36] shows that saturated turbulent amplitudes scale inversely with τ , and maximizing

τ is currently being investigated for stellarator turbulence optimization studies [37]. Because

the energy transfer rate scales with τ , it can be thought of as a nonlinear efficiency, where the

highest τ , corresponding to resonance of the three frequencies, allows smaller mode ampli-

tudes to match the energy injected by the instability. Formally, τ is the timescale associated

with the nonlinear response to an impulse; when τ is small, the system has limited memory

of interaction. The nonlinear frequency ω̂ for a mode at k can be expressed as the linear

frequency with nonlinear corrections due to the interactions with other modes. It can be

measured directly from the Fourier transform of the temporal autocorrelation function of

Φ̄k[35]. A common fitting assumption is that this follows a Lorenzian or Gaussian with peak

at the real frequency and width corresponding to the eddy damping rate[8].

Figure 4 shows |τ | for zonal couplings to the mode which causes the most energy pro-

duction and transport. The quantity |τ | is highest for coupling to modes at low radial

wavenumber, which energy transfer analysis reveals to be the those with the dominant en-

ergy transfer rates. Increasing β from 0.01% to 0.75% doubles |τ |, underscoring that the

nonlinear correlation effect is significantly more impactful on nonlinear electromagnetic sta-

bilization than the stable mode effect as measured by the unstable mode partition or the

energy production rate.

Measurements of τ from nonlinear simulations are too computationally involved for quick

predictions. As a linear proxy, we consider τlin = −i[ω′′
ITG

− ω∗
ITG

]−1, which measures

the triplet correlation lifetime between two unstable eigenmodes and an undamped, zero-

frequency zonal flow. The β scaling of this proxy is similar to that of the fully nonlinear
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FIG. 4. The absolute value of the triplet correlation time |τ | is calculated for triplets involving the

mode at kyρs = 0.15 and zonal flows at individual kxρs, for β = 0.01% (black circles), β = 0.25%

(red squares), β = 0.50% (blue triangles), and β = 0.75% (magenta diamonds). A clear increase of

nonlinear efficiency with β is observed, which is responsible for most of the nonlinear stabilization

due to finite β.
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FIG. 5. (Color online) Normalized heat flux (red circles) as a function of β, compared to the

following quasilinear models:
∑

k γk/k
2

⊥ (blue squares),
∑

k wj,kγk/〈k
2

⊥〉 (green upwards triangles),
∑

k |τnl,k|
−1wj,kγk/〈k

2
⊥〉 (magenta diamonds), and

∑

k |τlin,k|
−1wj,kγk/〈k

2
⊥〉 (black downwards tri-

angles). All quasilinear data uses model constants such that the nonlinear flux is matched in the

electrostatic limit.

quantity in the wavenumber region of interest, seen implicitly from Figure 5. Larger β ex-

tends mode structure [38] and increases |τ | by reducing the dependence of γ on kx. The

quantity τlin differs from τ because it represents the first step in a cascade to higher wavenum-

ber instead of direct coupling to a dissipation mechanism, and it lacks nonlinear frequency

corrections. The effect of nonlinear frequency corrections and stable modes on τ will be

discussed in a subsequent paper.

Now we discuss the heat flux scaling, its modeling by the quasilinear formula Eq. (1), and
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the effect of the nonlinear properties mentioned above. Figure 5 compares the quasilinear

scalings of
∑

γk/k
2

⊥,
∑

wj,kγk/〈k⊥〉
2,

∑

|τnl,k|
−1wj,kγk/〈k⊥〉

2,
∑

|τlin,k|
−1wj,kγk/〈k⊥〉

2, and

nonlinear flux Qes
i with β at ωT i = 8. The nonlinear heat transport is reduced by roughly a

factor of twenty over this range in β. In comparison, the growth rate decreases by less than

half. Incorporating the proper weights with perpendicular scale (〈k2

⊥〉 vs. k
2

⊥) and normalized

transport wk lowers transport predictions 30% as structures broaden with β. The model

that scales inversely with |τnl,k| predicts an 80% stabilization, which is much closer to the

nonlinear results. With ωT i = 6 (ωT i = 7), the quasilinear model predicted a 70% (60%)

reduction in flux, compared to the τ -modified model predicting a 95% (90%) with actual

reductions of 99% (95%). Transport predictions are very similar between quasilinear models

using linear and nonlinear τ . Whether the agreement seen in Fig. 5 is special to the case

examined or more general will be investigated elsewhere. The τ proxy based on couplings

between two unstable modes and a zonal flow may work well because the balance between

transfer to stable modes and unstable modes does not depend strongly on β. This model

does not include the enhanced stable mode excitation with β discussed earlier, which would

further reduce transport. While this modification constitues a clear improvement relative

to existing models, one can envision cases where the inclusion of τ will not be sufficient

to recover nonlinear results; such cases include changes to stable mode dissipation [19]

or multiple unstable eigenmodes. Experimental parameter sets with collisional dissipation

will be addressed in further work. These findings demonstrate the importance of τ as a

fundamental contributor in nonlinear energy transfer.

To summarize the findings of this Letter we note that qualitatively, electromagnetic effects

do not change ITG saturation physics. Energy production due to the instability is balanced

by transfer to higher-radial-wavenumber unstable and stable modes. The latter change

net energy production, increasing normalized energy production at low ky and extending

the unstable radial wavenumber range, while at higher binormal wavenumbers providing a

stabilizing effect.

Electromagnetic effects strongly reduce transport from ITG turbulence. The majority

of this effect is due to a higher triplet correlation time |τ |, which can be thought of as

an efficiency factor in the nonlinearity. Quasilinear transport models scaled with |τ |−1

accurately follow nonlinear transport predictions across the investigated β range. While

preliminary, linear proxies for the triplet correlation time that use eigenmode frequencies
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show promise for use in quasilinear models.

While these findings are robust throughout a wide range of temperature gradients and

β, further work is in progress applying this scaling to gyrokinetic analyses of experimental

β scans on multiple devices. The role of the τ in electromagnetic stabilization due to fast

ions is also under investigation.
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