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We present an experimental study on the non-equilibrium tunnel dynamics of two coupled one-dimensional
Bose-Einstein quasi-condensates deep in the Josephson regime. Josephson oscillations are initiated by splitting
a single one-dimensional condensate and imprinting a relative phase between the superfluids. Regardless of
the initial state and experimental parameters, the dynamics of the relative phase and atom number imbalance
shows a relaxation to a phase-locked steady state. The latter is characterized by a high phase coherence and
reduced fluctuations with respect to the initial state. We propose an empirical model based on the analogy
with the anharmonic oscillator to describe the effect of various experimental parameters. A microscopic theory
compatible with our observations is still missing.

The recent experimental advances in manipulating and
probing ultracold atomic gases established them as ideal
model system to study the non-equilibrium dynamics and re-
laxation of isolated quantum systems [1]. While a relaxation
seems in contradiction with a unitary evolution, both theoret-
ical and experimental works [1–3] show that non-integrable
systems reach a relaxed state resembling a Gibbs ensemble
[4]. Integrable systems generally relax to pre-thermal steady
states, for which a description by a generalized Gibbs ensem-
ble reflects the conserved quantities in the system [1, 5]. The
thermalization of nearly-integrable systems is of peculiar in-
terest.

In this context, an interesting model system is a bosonic
Josephson junction consisting of two coupled superfluids [6–
10]. In reduced dimensions (1D), the physics can be essen-
tially described by the quantum Sine-Gordon model [11–15],
as recently verified for systems in thermal equilibrium [16].
The dynamics occurring after a quench of the tunnel cou-
pling was recently studied [17] and showed a slow relaxation
saturating at a low phase coherence, see also related discus-
sions [18, 19]. In this letter, we present an experimental study
demonstrating a complete relaxation to a phase-locked equi-
librium state.

Our experimental system consists of two one-dimensional
quasi-condensates (1D-BEC) of 87Rb magnetically trapped
in a double-well potential with tunable barrier height. The
preparation protocol relies on an atom chip [20] to coherently
manipulate the wave-packets [21]. The various steps are il-
lustrated by Fig. 1, together with experimental fluorescence
pictures obtained after a time-of-flight of 46 ms [22].

We start the sequence with a single 1D-BEC of
750-4500 atoms in an elongated trap of frequencies
ωz = 2π×22 Hz (longitudinally) and ωx,y = 2π×3 kHz
(transversely) (Fig. 1(a)). The largest chemical potential com-
puted with [30] is µ = 2.4 kHz. Yang-Yang thermometry [23]
gives an estimate of the initial temperature of T = 18(3) nK.

Using radiofrequency-dressing [24, 25], we deform the trap
in 21.5 ms by continuously raising a barrier and obtain a
double-well potential elongated along the z-axis and symmet-
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FIG. 1. Schematic of the preparation sequence consisting in a split-
ting (a,b) of the original wave-packet to a decoupled trap, a phase
imprinting between the wave-packets (c,d) and a recoupling to initi-
ate a tunneling dynamics (e). The captions display the fluorescence
pictures (averaged over 10 repetitions) of the atomic density after
46 ms time-of-flight and the corresponding integrated profiles.

ric with respect to the barrier (Fig. 1(b)). The barrier is made
high enough to neglect tunneling, such that the two 1D-BECs
are considered decoupled. We define the relative phase

φ(t) = φL(t)− φR(t), (1)

with φL,R(t) the phase of the left and right component, re-
spectively. The phase is experimentally extracted from the
interference pattern resulting from the overlap of the wave-
functions after time-of-flight (cf. pictures of Fig.1(b,d)). The
conjugated variable is the normalized atom number imbalance
defined by:

n(t) =
NL(t)−NR(t)

NL(t) +NR(t)
, (2)

with NL,R(t) the atom number of the left and right compo-
nent, respectively. The imbalance measurement requires to
move the clouds further apart by raising the barrier height.
This prevents their overlap in time-of-flight. At this stage, the
averaged values of both the imbalance and the phase are close
to zero (cf. pictures of Fig. 1(b,d)) due to the trap symmetry.
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We then imprint a initial relative phase φ0 by shifting one
site of the double-well along the vertical y-axis in 1.5 ms
(Fig. 1(c)). This introduces an energy difference ε between
the two sites and results in a phase accumulation φ(t) = εt/~.
The trap symmetry is then re-established in 1.5 ms (Fig. 1(d)).
We prepare a relative phase between 0 and π by varying
the value of the vertical shift. The phase appears as a shift
between the integrated profile maximum and the center of
the envelope, as displayed in the fluorescence pictures of
Fig. 1(d) and Fig. 3(a)). The straightness of the fringes
shows that the relative phase is uniformly imprinted along
the elongated direction of the condensate with negligible fluc-
tuations at the scale of the imaging resolution (4 µm in ob-
ject space) [22]. In the decoupled trap, the relative phase
randomizes under the effect of interaction-induced phase dif-
fusion [26–28]. In our case, this effect is strongly reduced
by a large number-squeezing factor obtained by the split-
ting of the initial BEC [21, 29]. We define the number-
squeezing factor by ξN = ∆n/

√
N with ∆n the standard de-

viation of the imbalance distribution and N the total atom
number. For our typical atom number N = 2500(200) atoms,
we obtain ξN = 0.57(6). The corresponding phase diffusion
rate is 0.05(2) rad/ms. In circular statistics, the phase co-
herence is indicated by the phasor R of the phase distribu-
tion, which varies between 0 for a random distribution and
1 for a perfectly narrow one. The phasor degrades from
Rsplit = 0.94(2) after splitting to R0 = 0.91(2) at the end of
the preparation sequence, indicating that a high phase coher-
ence is preserved (Fig. 3(a)) and that the initial phase φ0 is
well defined. The imbalance is not affected by the phase shift
such that its value is n0 ≈ 0.

Finally, the barrier is lowered in 3 ms (Fig. 1(e)). This ini-
tiates a tunneling dynamics characterized by a single parti-
cle tunnel-coupling strength varying between J/h = 2(1) Hz
and J/h = 32(3) Hz. The corresponding transverse frequen-
cies vary between ωx = 2π×1.2 kHz and ωx = 2π×1.5 kHz.
The chemical potential ranges from µ/h = 0.9 kHz to
µ/h = 1.4 kHz and always remains lower than the next trans-
verse excited state energy (in this case the second excited
state). We then neglect the population of atoms in higher
transverse states.

We investigate the dynamics by destructively measuring the
phase and imbalance alternatively to reconstruct the entire dy-
namics. A typical example of the oscillating dynamics is dis-
played in Fig. 2 forN = 3300(600) atoms, φ0 = −1.3(4) rad
and n0 = −0.004(13). The oscillations of the mean phase
and imbalance present a damping on a timescale of 15 ms
toward an equilibrium state (neq ≈ 0, φeq ≈ 0) without de-
crease of the total atom number. While the oscillations are
expected from a two-mode Bose-Hubbard model [31], such
a damping goes beyond the existing microscopic descriptions
[17, 18, 32].

The analysis of the individual fluorescence images shows
that the fringe patterns after damping are straight and cen-
tered on the envelope maximum, as displayed in Fig. 3(b).
We deduce that the relative phase reaches the value of zero
uniformly along the condensate. Furthermore, the contrast of
the integrated fringes barely degrades from C0 = 0.56(7) to

FIG. 2. Damped Josephson oscillations of the relative phase (a)
and imbalance (b) for N = 3300(600) atoms, φ0 = −1.3(4) rad
and n0 = −0.004(13). Red line: Fit result giving a damping time
τ = 9.8(2) ms, U/h = 0.71(15) Hz and J/h = 8(2) Hz. Red dots:
residuals (shifted for clarity). Dashed line: corresponding predic-
tions of the mean-field two-mode Bose-Hubbard model. (c) Evolu-
tion in the phase portrait representation.

Ceq = 0.49(8). This indicates that the longitudinal phase fluc-
tuations do not increase at the timescale of the damping.

The phase distribution, obtained from 50 repetitions of an
experimental sequence, shows that the phase locking is very
reproducible (Fig. 3(b)). After relaxation, the phasor value
reaches Req = 0.96(2), corresponding to a coherence factor
is 〈cos(φeq)〉 = 0.95(2). The phase coherence reaches a value
exceeding the theoretical expectation [17] and the relaxation
dominates over dephasing phenomena expected in such a sys-
tem [33].

The relaxation is observed for a broad range of experimen-
tal parameters. In order to analyze the damped oscillations
obtained under various conditions, we develop a phenomeno-
logical model adapted from the mean-field two-mode Bose-
Hubbard model [7]. We call U the on-site interaction energy
and J the single particle tunnel coupling energy. The ratio
NU/2J is in the order of 100, placing our experiment deeply
into the Josephson regime [34]. The derivation of the Hamil-
tonian for a symmetric trap gives the following undamped
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FIG. 3. (a) Top: Interference fringes for the initial state obtained
by fluorescence imaging and corresponding integrated density pro-
file. Bottom: Phase distribution (50 realizations) showing a high
phase coherence. (b) Corresponding quantities after relaxation. We
observe a uniform phase-locking without degradation of the phase
coherence. A slow breathing mode is visible as an expansion of the
fringes (see supplemental materials).

time evolution of the phase and imbalance:

ṅ(t) ≈ −2J

~
√

1− n2(t) sin (φ(t)) , (3)

φ̇(t) ≈ NU

~
n(t) +

2J

~
n(t)√

1− n2(t)
cos (φ(t)) . (4)

The interplay between the inter-atomic interaction NU and
the tunneling 2J leads to different dynamical modes. As
demonstrated in [31], every state initialized with no imbalance
results in Josephson oscillations of the phase and imbalance
characterized by the plasma frequency ωp ≈

√
NU2J/~. Our

experimental protocol prepares n(0) ≈ 0 to remain in the os-
cillating regime. The system presents an analogy with a classi-
cal momentum-shortened pendulum [35] in which the relative
phase φ is analogous to the pendulum angle and the imbalance
n is proportional to its momentum φ̇. In [35], the length of the
pendulum is defined by l(t) =

√
1− n2(t). Defining N0 as

the amplitude of the n−oscillations, it follows from [31] that
N0 ≤ 2

√
2J/NU in the limit of NU � 2J . Consequently,

the momentum-shortening is negligible in our case and the an-
alytical solution of a rigid pendulum expressed in terms of the
sn-Jacobi elliptic function is a good approximation [36, 37].
To account for the damping of the oscillations, we follow the
approach of [35] and add a dissipative term to Eq. (3):

ṅ(t) ≈ −2J

~
√

1− n2(t) sin (φ(t))− η

N
φ̇(t), (5)

where η is an empirical dimensionless viscosity. η normalized
by N has the physical meaning of the shunting conductance
in the Resistively and Capacitively Shunted Junction (RCSJ)
model, in which a damping appears as in Eq. (5) [38, 39]. The
viscosity results in an exponential decay with the characteris-
tic time τ . In the harmonic regime and in the limitNU � 2J ,
τ reads:

τ(U) ≈ 2~
Uη

. (6)

Assuming that Eq. (6) holds true for large amplitude oscilla-
tions, we empirically modify the analytical solutions to ac-
count for a damping. The phase φ(t) and the imbalance n(t)
become:

φ(t) ≈ 2 arcsin

[
sin

(
Φ0

2

)
e−t/τ

× sn

(
ωt+ φ′

∣∣∣∣ sin(Φ0

2

)
e−t/τ

)]
, (7)

n(t) ≈ N0

ω × 2 sin(Φ0

2 )
φ̇(t). (8)

Φ0 and N0 are the amplitudes of the phase and imbalance os-
cillations. ω is the damped harmonic frequency, which differs
from the plasma frequency ωp by ω =

√
ω2
p − 1/τ2. How-

ever, the correction introduced by τ is negligible. φ′ is a
temporal shift of the oscillations to compensate that the sn-
function conventionally starts at φ(0) = Φ0. The argument
sin
(

Φ0

2

)
e−t/τ in the sn-function describes the anharmonic-

ity of the oscillation, initially set by Φ0 and exponentially
decreasing over time under the effect of η. We establish a
connection between U, J and η of the two-mode model and
N0,Φ0, ω and τ of the pendulum analogy. It relies on the ap-
proximation ω ≈ ωp, on the definition of τ given by Eq. (6)
and by comparing Eq. (8) with the linearized Eq. (4).

J ≈ ~ω
4

N0

sin(Φ0/2)
, (9)

U ≈ 2~ω
sin(Φ0/2)

N ×N0
, (10)

η ≈ N ×N0

τω sin(Φ0/2)
. (11)

We use Eqs. (7),(8) as a fit model. The small amplitude
of the n-oscillations makes it difficult to estimate N0. As η
depends on N0 through Eq. (11), fitting the dynamics with
Eqs. (4),(5) is unreliable. In contrast, τ shows no correla-
tions with N0 and indicates clearly the effect of the experi-
mental parameters on the relaxation mechanism. We recover
the values of U and J using Eqs. (9),(10) and insert them in
Eqs. (3),(4) to build the phase portrait presented in Fig. 2(c)
and in the inset of Fig. 4(a).

Eqs. (7),(8) reproduce the decay of the oscillations ampli-
tude. Also, as the system gets closer to the harmonic regime,
the oscillation frequency increases. It shows in Fig. 2(a),(b)
when comparing the data and fit (red line) with the undamped
prediction (dashed gray line) of the 2-mode model. The ab-
sence of structure in the residuals shows that it is justified to
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FIG. 4. Relaxation dependence on parameters (a) Variation of τ with the initial phase for N = 750(100) atoms and J/h = 6(1) Hz. The
damping time remains constant within the error bars, excluding a dependence on the oscillation amplitudes. Inset: Fit results for the various
prepared phases showing the self-consistency of the trajectories. (b) Variation of τ with the tunnel coupling for N = 3500(500) atoms and
φ0 = 1.93(35) rad. τ does not present a dependence on the tunnel coupling J/h between 2(1) Hz and 32(3) Hz. Inset: Fit results for the
plasma frequency ω and prediction of the 2-mode model for constant values of N̄ = 3500 atoms and Ū/h = 0.85 Hz (red dashed line). (c)
Variation of τ with the atom number N for J/h = 7(2) Hz and φ0 = −1.48(98) rad. τ presents a dependence in 1/

√
N (red line). Inset: ω

versus N and prediction of the 2-mode model (dashed red line) for the averaged values Ū/h = 0.71 Hz and J̄/h = 7 Hz deduced from the fit
parameters.

fit the dynamics with a unique damping time, similarly to a
pendulum evolving in a medium of fixed viscosity. This im-
plies that the relaxation does not depend on the amplitude of
the oscillation.

A more systematic check of the dependence of τ on the
oscillation amplitude is performed by preparing oscillations
of initial phase φ0 varied between −0.2π and −0.8π. J
and N are kept constant with J/h = 6(1) Hz (fit result) and
N = 750(100) atoms. Fig. 4(a) displays the values of τ for
the different initial phases and the inset shows the trajectories
deduced from the fit in the phase portrait representation. We
observe a constant damping time τ = 15(1) ms, correspond-
ing to η = 26(7). Since a larger initial phase also implies a
larger amplitude of the imbalance oscillation, we can state that
the relaxation is independent of the n−oscillation amplitude.

We also check the influence of the tunnel coupling strength
between J/h = 2(1) Hz and J/h = 32(3) Hz (fit result).
The initial state is characterized by N = 3500(500) atoms,
n0 = −0.004(13), φ0 = −1.93(35) rad, C0 = 0.53(7) and
R0 = 0.94(3). The fit results for the plasma frequency ω
are displayed in the inset of Fig. 4(b) and follows the predic-
tion of the 2-mode model. Fig. 4(b) shows that the damping
does not present an obvious dependence on J . This implies
that the damping does not result from the tunneling dynamics
of the wave-functions, nor from excitations to higher trans-
verse modes. Additionally, the absence of dependence of τ on
Φ0, N0 and J shows that the relaxation does not depend on
the plasma frequency, that we can write as ω = 4J

~N0
sin(Φ0

2 ).
This excludes a friction between the atoms and a thermal
background gas as a cause for the damping.

In the following, we measure the dynamics for a total atom

number varied between 750 and 4500 atoms to investigate the
effect on the relaxation. The barrier height is kept identical
and the change of atom number has a negligible impact on
the tunnel coupling which remains J/h = 7(2) Hz. The pre-
pared phase is φ0 = −1.48(98) rad, associated to a contrast
C0 = 0.55(7) and a phasor R0 = 0.81(3). The typical ini-
tial imbalance for the largest atom number is n0 = 0.006(47).
The variation of τ with the atom number is displayed in
Fig. 4(c). We fit τ by the function αNβ , with α and β the
fit parameters and obtain α = 0.47(2) and β = −0.49(3).
According to Eq. (6), τ ∝ 1/Uη, leading to Uη ∝

√
N . The

dependence of the viscosity η with the atom number depends
on the variation of U with N .

In conclusion, we observe that the oscillating tunneling dy-
namics in a 1D bosonic Josephson junction relaxes to a phase-
locked steady state. The timescale of the phenomenon re-
mains unaffected by the amplitude and frequency of the os-
cillations. It is unchanged for a tunnel coupling J/h between
2 Hz and 32 Hz and presents a dependence in approximately
1/
√
N with the atom number. The observed phase-locking is

much faster than predicted in [17–19] and leads to an equi-
librium state with small fluctuations in phase and atom num-
ber imbalance. This questions the suitability of the quan-
tum Sine-Gordon model to describe the out-of-equilibrium
tunneling dynamics of two 1D superfluids confined in a har-
monic potential. Ongoing work aims at determining the mi-
croscopic origin of the relaxation. We attempt various the-
oretical approaches, including quenches in the Sine-Gordon
model using exact solutions in the single mode approximation,
truncated Wigner approximation and variational Gaussian ap-
proach. None of these reproduces the fast and complete phase
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locking we observe. A better understanding of the relaxation
requires a study of the relaxed state and an estimation of its en-
ergy. While this could in principle be deduced from J〈cosφ〉
and from the final phase fluctuations, the latter are dominated
by our imaging resolution and imaging shot noise in the cur-
rent experiment.
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