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Quantization of energy is a quintessential characteristic of quantum systems. Here we analyze
its effects on the operation of Otto cycle heat machines and show that energy quantization alone
may alter and increase machine performance in terms of output work, efficiency, and even opera-
tion mode. We show that this difference in performance occurs in machines with inhomogeneous
energy level scaling, while quantum machines with homogeneous level scaling behave like classical
machines. Our results demonstrate that quantum thermodynamics enables the realization of clas-
sically inconceivable Otto machines, such as those with an incompressible working substance. We
propose to measure these effects experimentally using a laser-cooled trapped ion as a microscopic
heat machine.

The discrepancy between classical and quantum me-
chanics, together with the fast progress on the control of
open quantum systems such as ion traps [1–5], SQUIDS
[6–8], quantum dots [9] and molecules [10], has ignited ef-
forts to clarify the capabilities and thermodynamic limi-
tations of quantum heat machines [11–14] under quan-
tum effects such as coherences [15–17], quantum cor-
relations [18, 19], quantum statistics of particles [20],
squeezed thermal baths [21–23], many-body effects [24],
and quantized work reservoirs [25–27]. Although these
effects may offer classically inaccessible capabilities for
machines, there has been no clear evidence that adiabatic
quantum machines can outperform their classical coun-
terparts once all non-equilibrium effects [28] and prepa-
ration costs are considered [29, 30]. Among the ther-
mal machines, one of the most studied is the Otto ma-
chine [31, 32]. For this machine, most of the analyses
have been limited to potential deformations that homo-
geneously scale all the energy levels. In this regime, a
quantum and a classical heat machine have the same ef-
ficiency [32]. The few analyses that consider an inhomo-
geneous energy scaling [33, 34], have not show a clear
advantage of a quantum heat machine over its classical
counterpart.

In this Letter, we compare the performance of two
identical heat machines based on trapped particles
(working substance): one governed by classical mechan-
ics and the other by quantum mechanics. We show that
the discreteness of energy levels due to quantization, can
increase the efficiency of a heat machine provided that
the potential deformation creates an inhomogeneous shift
of energy levels. We show that energy quantization can
then: i) improve work extraction, cooling or efficiency
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relative to the classical counterpart, even reaching the
Carnot bound; ii) change the operation mode, e.g., a
heat machine classically expected to operate as a refriger-
ator, may operate as an engine once energy quantization
is considered; iii) enable operation at Carnot efficiency
even in regimes where classically neither work extraction
nor refrigeration are expected. The origin of the quan-
tum enhanced performance can be traced to the change
in relation between temperature and population distri-
bution for adiabatic potential transformations with in-
homogeneous energy level shifts. We emphasize that this
analysis relies only on energy quantization and constant
level populations in adiabatic potential transformations,
and that it does not make use of any hidden resources
like non-equilibrium or entangled baths [28].

Our results rely on the sensitivity of quantized energies
to the boundaries, which classical systems are insensitive
to. We illustrate this with an example of an Otto engine
operated with an ideal gas contained in a one-dimensional
(1D) infinite well potential (see Fig. 1A). The adiabatic
introduction of a δ−function barrier at the center does
not alter the volume nor the classical energy, but by af-
fecting the quantum wavefunctions, changes the energies
of select quantum states. We show that this difference
can result in superior performance of quantum heat en-
gines.

Operated as a heat engine, an Otto machine (see
Fig.1B and SI) transforms incoming heat from the hot
bath, Qh ≥ 0, into extracted work, W < 0, with effi-
ciency ηen = −W

Qh
. It consists of two adiabatic processes

where the engine is decoupled from thermal baths, and
two isochoric (constant volume) processes where the en-
gine is coupled to two thermal baths at temperatures Th,
Tc. Note that the efficiency of the Otto engine is not
affected by the fact that the isochoric strokes are irre-
versible (see SI-VII and [36, 37]). Operated as a refrig-
erator it consumes work, W > 0, in order to cool down
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Figure 1: A) The adiabatic introduction of an infinite
δ−function barrier does not change the energy of a classi-
cal ideal gas (left), precluding classical work extraction, but
shifts the energy of the quantum ground state (right) due to
the non-zero amplitude of its wavefunction at the barrier po-
sition, enabling quantum work extraction. B) Quantum Otto
cycle heat engine using the infinite well potential and the
δ−barrier. The cycle is composed of two adiabatic strokes
(connecting states A and B, and C and D) where the poten-
tial is adiabatically deformed and the ion does not interact
with any thermal bath, and two “isochoric” or “isoparamet-
ric” strokes [31] (connecting states B and C, and D and A)
where the potential is kept constant while the ion equilibrates
with the cold and the hot bath, respectively see the SI-VII.
Work exchange results from the energy shift of the ground
state while the excited state remains unshifted (for Lc = Lh):
work extraction WCD takes place after thermalization with
the cold bath and therefore at high ground-state population,
whereas work injection WAB takes place after thermalization
with the hot bath and therefore at lower ground-state popu-
lation. The difference between the ground-state populations
results in net work extraction |WCD| > |WAB | at constant
volume [35].

the cold bath by extracting heat from it, Qc > 0, with
efficiency ηref = QC

W . We term heater the case where
the heat flows in its “natural” direction from hot to cold,
Qh > 0 and Qc < 0, while no work is extracted, W ≥ 0.

For a classical ideal gas in a uniform potential the com-
pression ratio r = Vc

Vh defines the operation mode of the

Otto cycle (Vc(h) is the container volume when the ideal
gas is at equilibrium with the cold (hot) bath): i) for
r ≤ 1 the machine is a heater; ii) for 1 < r < rCar ≡(
Th
Tc

) 1
γ−1

it is an engine; iii) for r > rCar it operates as a

refrigerator. If run like an engine, the classical efficiency

is

ηenOtto = 1− 1

rγ−1
≤ 1− 1

rγ−1
Car

≡ ηenCar, (1)

where γ =
Cp
Cv

is the specific heat ratio and ηenCar is the
Carnot efficiency limit for an engine. For an incompress-
ible gas, r = 1 and ηenOtto = 0. Classically, a compressible
working substance is needed for work extraction, as it
has been shown for classical rubber engines [38, 39] and
classical continuum media [40, 41]. We show below that
these paradigms break down once energy quantization is
included in the analysis.

We first show that if the adiabatic potential deforma-
tion during the Otto cycle (from Vc to Vh and vice versa)
is such that the energy levels scale as En,h = qEn,c, where
q is a positive constant independent of n (homogeneous
scaling), then the classical and quantum heat machines
always operate in the same mode with the same efficiency.
Examples of this type of deformation are the frequency
change of a 1D harmonic trap or the change of length of a
1D infinite square well potential. Under this assumption,
the work (see SI-I) is

W =
(1− q)
q

∫ Th

qTc

CvdT, (2)

where Cv ≡ ∂〈Hh〉T
∂T is the heat capacity when the poten-

tial is Vh, and 〈〉T is the expected value in the thermal
Boltzmann distribution at temperature T . Similarly, the

expressions for the heat transfers are: Qh =
∫ Th
qTc

CvdT

and Qc = − 1
q

∫ Th
qTc

CvdT. These expressions can also be

derived from a completely classical treatment [42], where
Cv is then the classical heat capacity. Efficiencies, being
the ratio between work and heat, do not depend on the
heat capacity for homogeneous energy scaling and under
this condition are the same for classical and for quantum
heat machines. However, the efficiency and even the op-
eration mode can change when adiabatic potential defor-
mations result in inhomogeneously scaled eigenenergies,
En,h 6= qEn,c.

To illustrate this, consider the Otto cycle shown in
Fig. 1B where the potential is a 1D infinite well with
variable length L, with a thin barrier of width ε that
can be adiabatically turned up to a height V0 at the
center of the well. Here the energy of a classical par-
ticle in thermal equilibrium at temperature T is 〈H〉 ≈
1
2kBT +V0

ε
Le
− V0
kBT . In the limit of an infinitesimally thin

barrier ε→ 0 but constant g = V0ε, the barrier becomes
a δ−function, the energy 〈H〉 → 1

2kBT becomes inde-
pendent of the barrier, and the classical work output,
cooling, and efficiency correspond to the classical Otto
cycle with r = Lc

Lh
, where Lc(h) is the well length at equi-

librium with the cold (hot) bath.
By contrast, under quantum treatment, the even and

odd eigenenergies are modified differently by introduc-
ing the delta barrier, gδ(x) (see Fig. 1A) [43]. Odd
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wavefunctions (ψ(x) = −ψ(−x)) remain unperturbed,
En,c = En,h, but En,c 6= En,h for even wavefunctions
(ψ(x) = ψ(−x)). In this case, the compression ratio re-
mains r = 1 and the classical efficiency is zero, while
the quantum engine performs nearly at Carnot efficiency
for a high repulsive barrier (see Fig. 2A). Measuring
the work extraction during this potential deformation,
or other transformation that do not change the “bulk”
properties of the working substance, could be used to de-
termine if the working substance is governed by classical
or quantum laws.

Fig. 2B shows that, as one decreases the temperature
of the baths at fixed temperature ratio, Th/Tc, the system
transitions from a classical regime, where many quantum
states are populated, to a quantum regime with higher
efficiency. In the limit of low temperature, where only the
two lowest energy levels are appreciably populated, the
work extraction condition and efficiency can be written
as (see SI-II)

Th
Tc
≥ ∆h

∆c
> 1; η = 1− ∆c

∆h
= 1− 1

r2

(
1

1− ∆Ec,δ
∆c

)
,

(3)

where ∆h = E1,h − E0,h and ∆c = E1,c − E0,c are the
energy gaps between excited and ground state when the
system is in thermal contact with the hot and cold bath,
respectively, and ∆Ec,δ ≤ ∆c is the gap shift produced
by the δ barrier. Eq. 3 shows that the quantum Otto
engine may extract work, at Carnot efficiency, for r = 1
(fixed volume) or any other value of r (see dotted green
line in Fig. 2A). Large g even enhances the efficiency at
r < 1, effectively turning a classical heater into an engine.
Negative g reduces the efficiency for r < rCar, but turns
a classically expected refrigerator into a highly efficient
quantum engine for r > rCar. Carnot efficient quantum
engines for any compression ratio can be achieved be-
yond the two-level approximation. This requires extra
control parameters, such as additional δ−barriers, that
will ensure that all the energy levels have the appropri-
ate values. In the same way, g could be optimized for
reaching maximum work extraction at any compression
ratio or for producing maximum heat extraction, Qc, or
refrigeration efficiency ηref .

The effects of quantization-induced work enhancement
and operation mode change can be experimentally tested.
To tune a given machine from classical to quantum, one
can increase the potentials and temperatures by the same
multiplicative factor, ξ2. This effectively decreases the
quantization scale relative to the bath temperature and
as we show in SI-IV this scaling is equivalent to reducing
~ to zero as ~eff = ~/ξ (see Fig. 3C).

As a potential experimental platform we consider a
trapped, laser-cooled ion in the combined electrostatic
harmonic potential of a Paul ion trap and a sinusoidal
potential of an optical lattice [2–4]. This potential can
be used to mimic the infinite well with and without the
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Figure 2: A) Efficiency normalized to Carnot efficiency for
a classical (see SI-III) and quantum (see SI-I) Otto engine
with a barrier of the form gδ(x) (see Fig. 1B). The plane is
divided into three areas depending on the classical operation
mode (see Eq. (1) and the discussion below it). The tem-

perature ratio is Th
Tc

= 12, γ = 3, g is given in units of the

critical value gcri = 2~2
mLc

, and units are assumed such that
2~2
mLh

= 1. B) Classical (dashed) and quantum (continuous)

normalized efficiency as function of Tc, for r = 1.4 (thick) and

r = 1 (thin), and fixed ratio Th
Tc

for an ideal gas. The tem-
perature dependence is a signature of the quantum machine.
The number of populated levels depends on the temperature.

δ−barrier. The potential has the form

Vi(x) = mω2
i a

2
(

1
2 (x/a)2 + κi

4π2 (1 + cos(2πx/a))
)
, (4)

where κi = ω2
L,i/ω

2
i is the dimensionless parameter con-

trolling the shape of the potential (see Fig. 3A), given by
the squared ratio of lattice vibrational frequency ωL,i =√

2π2Ui
ma2 to the harmonic trap vibrational frequency ωi.

Here Ui is the depth of the lattice potential. For κi = 1,
the potential is a single well while for κi > 1, the poten-
tial is a double-well, or, equivalently, a single well with
a barrier in the middle. The parameter κi can be tuned
by tuning Ui (via laser power) and/or the vibrational fre-
quency of the harmonic potential ωi (by applying voltage
to the Paul trap electrodes). In Fig. 3B we show compu-
tational results based on discrete variable representation
(DVR) calculations [44] for the work extraction and effi-
ciency of the classical and quantum versions of the Otto
cycle shown in Fig. 1B, but implemented with the ion-
trap potential (Eq. (4)) by adiabatically tuning κi and ωi
in order to generate a double-well and flat-bottom poten-
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Figure 3: A) The proposed experimental potential (see Eq.
(4)). B) Calculated work (top) and normalized efficiency (bot-
tom) for the classical (left) and quantum limit (right). Here
κh = 1 and ωh = 1MHz have been chosen. The white areas
correspond to the heater. The “X” indicates the parameters
used for Fig. 3C, κc = 1.7 and ωc = ωh, where the classical
heater operates as a heat engine in the quantum limit. C) Cal-
culated work and efficiency. The classical limit is obtained at
1
ξ
→ 0, where the work becomes constant and positive (work

injection). In contrast, at the quantum limit, 1
ξ

= 1, work is

extracted. Cycle parameters: Th/Tc = 41.6, n̄c = 0.033.

tial. As shown by the marked “X”, there are parameters
for which a classical heater operates as a quantum engine
once energy quantization is considered. Fig. 3C shows
the DVR results as function of 1

ξ for the parameters of the

point “X” on Fig. 3B. The sign of work flips from posi-
tive (work injection) to negative (work extraction) when
going from the classical to the quantum limit. Thus, the
turning of a heater into an engine by energy quantization
is directly observable in a realistic experimental setup.

During the isochoric strokes the ion is continuously
laser-cooled; at steady-state its temperature is fixed at
a stable point where the laser cooling rate balances the
heating rate by the environment. The occupation of en-
ergy levels then approximately follows a thermal distribu-
tion and the system can be considered to be in contact
with a thermal bath [45, 46]. Contact to a cold ther-

mal bath is achieved by optimizing laser cooling param-
eters to reduce the steady-state temperature of the ion,
whereas contact to a hot thermal bath is achieved by
choosing sub-optimal cooling parameters. Raman side-
band cooling of 174Yb+ in an ωL,i ∼ 2π × 10MHz lat-
tice has been shown to reach near ground-state occupa-
tion n̄ ∼ 0.1, and the temperature has been increased
controllably by up to a factor of 10 [2–4]. This range
could be further increased by reducing external heating
sources, and using a narrow optical transition to pre-
cisely measure the motional quantum state populations
and ion temperature [47]. The total energy stored in the
system ET =

∑
n pnEn at different times can thus be

measured via resolved vibrational mode spectroscopy to
determine the energy eigenspectrum En, and populations
pn [45]. From these measurements, the total work out-
put per cycle can be obtained, and the experiment can be
performed in the quantum and classical limits to identify
the effects of quantization.

For the adiabatic strokes the laser cooling is discon-
nected. Perfect adiabaticity has been assumed in the cal-
culation above. In practice, potential deformations dur-
ing the Otto cycle have to be performed at finite speed,
and to avoid excitations that perturb the population dis-
tribution, the total adiabatic ramp time must be longer
than the inverse of the smallest energy spacing. Yet, the
ramp time must be shorter than the thermalization time
set by the background heating in the range ∼ 1 − 1000
motional quanta per second [48]. These two conditions
can be fulfilled simultaneously for trap vibration frequen-
cies in the MHz range.

We have shown that a quantum Otto engine can be
more efficient than its classical counterpart, but that
both are subject to the Carnot limit. This performance
difference may be significant since the efficiency of real
heat engines [49] is limited by the practical difficulty to
reach large compression ratios. Moreover, we have shown
that classically well established paradigms no longer hold
in the quantum regime, where energy quantization allows
engines to operate at Carnot efficiency even for compres-

sion ratios r < 1, r >
(
Th
Tc

) 1
γ−1

and r = 1 (fixed volume),

which could enable the realization of Otto engines with
incompressible working substances. These results still
hold for a simple model of finite time or imperfect ther-
malization during the isochoric strokes (see SI-VI), but
more detailed studies are needed to clarify the difference
between quantum and classical finite time heat machines.

Since a heat machine operating at given bath temper-
atures is only characterized by two parameters, the effi-
ciency η and the work W , it is always possible to con-
struct a classical machine that mimics a quantum ma-
chine with the same η and W , by choosing a different
compression ratio, working fluid, potential deformation,
etc. However, here we are interested in differentiating
performance changes based on the quantum/classical na-
ture of the working substance from those originating from
other parameter differences. As we have shown, energy
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quantization, of purely quantum origin, can give rise to
a marked difference in performance.

Energy quantization depends on boundary effects, that
generally can be neglected for classical thermodynamic
systems, but at the quantum regime allow for work ex-
traction without changing any bulk property of the work-
ing substance such as length for a 1D system (or volume
for 3D).

Finally, we have shown that for the studied system
non-classical results can be only found when energy levels
are inhomogeneously scaled. This regime has rarely been
analyzed and requires further investigation. Some po-
tential future research paths include the performance of
other thermodynamic cycles (i.e., Carnot, Stirling, etc),

or the use of a working substance composed of interact-
ing particles or indistinguishable particles (Fermions and
Bosons).
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