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An emerging insight is that ground states of symmetry-protected topological orders (SPTO’s)
possess latent computational complexity in terms of their many-body entanglement. By introducing
a fractional symmetry of SPTO, which requires the invariance under 3-colorable symmetries of a
lattice, we prove that every renormalization fixed-point state of 2D (Z2)m SPTO with fractional
symmetry can be utilized for universal quantum computation using only Pauli measurements, as
long as it belongs to a nontrivial 2D SPTO phase. Our infinite family of fixed-point states may
serve as a base model to demonstrate the idea of a “quantum computational phase” of matter, whose
states share universal computational complexity ubiquitously.

Introduction.—Understanding the varied correspon-
dence between quantum entanglement and quantum
computation is one of the leading goals of quantum in-
formation science. Measurement-based quantum com-
putation (MQC) [1–3], where computation is driven by
single-spin measurements on a many-body resource state,
lets us study this correspondence directly, in terms of
the computations achievable with a fixed resource state.
Of particular interest are the universal resource states,
whose many-body entanglement lets us implement any
quantum computation efficiently [4–6]. In trying to char-
acterize the entanglement found in universal resource
states, researchers have developed a long list of exam-
ples, from the 2D cluster state [7, 8] and certain tensor
network states [4, 5, 9–13], to condensed matter models
such as 2D Affleck-Kennedy-Lieb-Tasaki (AKLT) states
[14–18] and renormalization fixed-point states of inter-
acting bosonic quantum matter [19, 20].

An emergent insight from these examples has been the
utility of symmetry-protected topological order (SPTO),
a form of quantum order arising from nontrivial many-
body entanglement protected by a symmetry [21–29].
This insight has led researchers to investigate a gen-
eral correspondence between SPTO and MQC, with the
ultimate aim of discovering a “universal computational
phase” of quantum matter. In such a phase, the con-
stituent states’ SPTO and symmetry alone structure
them as universal resource states. While this approach
has uncovered increasingly general single-qubit compu-
tational phases in 1D spin chains [30–40], much less is
known in the computationally important setting of 2D
spin systems outside of variously perturbed phases con-
taining the cluster state [41–45]. This disparity comes
both from the increased complexity present in 2D many-
body systems, as well as the existence of physically dis-
tinct forms of 2D SPTO with different operational capa-
bilities [19]. For these reasons, we have yet to figure out
even a base model for realizing the idea of a universal
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computational phase within the framework of SPTO.

Here, our key starting point is to focus on 2D model
states representing renormalization group (RG) fixed-
point states of SPTO. As described in detail in Ap-
pendix A, these “3-cocycle states” [23] define a coarse-
grained, yet infinitely large, family of representative
wavefunctions which are macroscopically distinct regard-
ing their SPTO. In addition to the standard abelian,
on-site symmetry groups G = (Z2)m, we introduce an
additional fractional 1

3 symmetry of 2D lattice geome-
try, where symmetry operators are applied to only a cer-
tain fraction of spins on a 3-colorable lattice. It turns
out that this fractional symmetry is powerful enough
to establish a one-to-one correspondence between the
computational universality of these states for MQC and
the non-triviality of SPTO phases they represent in
terms of cohomology classes. Our findings form com-
pelling evidence pointing towards universal computa-
tional 2D phases among general fractionally symmetric
SPTO states, with the expectation that an operational
analysis of RG flows may be feasible along the same lines
as the aforementioned success of RG methods in 1D spin
chains.

Measurement-based Quantum Computation.—
Measurement-based quantum computation (MQC)
utilizes an entangled many-body resource state to
perform quantum computation via local measurements
on single lattice sites. An MQC protocol is adaptive if
the choice of measurement basis depends on previous
measurement outcomes. A universal resource state is
one which allows any unitary quantum circuit to be
efficiently implemented using single-site measurements.

While MQC has historically focused on the 2D cluster
state [7], which has a peculiar nature regarding SPTO
(see Appendix B), we are more interested here in its 1D
spin chain cousin and the Union Jack state of [19] (see
Figure 1). Within MQC, the 1D cluster state can imple-
ment all single-qubit operations, while the Union Jack
state is universal using only Pauli measurements, a prop-
erty called Pauli universality.

Symmetry-Protected Topological Order.—Symmetry-
protected topological order (SPTO) is a quantum phe-
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FIG. 1. The 1D cluster state |ψ1C〉 (a), and 2D Union Jack
state |ψUJ〉 (b), canonical examples of the entangled many-
body states we investigate. (a) The 1D cluster state is formed
from qubit |+〉 states (with |+〉 := 1√

2
(|0〉+ |1〉)) on a 1D spin

chain, which are entangled with nearest-neighbors CZ gates
acting as CZ |α, β〉 = (−1)α·β |α, β〉. (b) The Union Jack
state is obtained from |+〉 states on a 2D Union Jack lattice,
which are entangling with nearest-neighbor triple CCZ gates
acting as CCZ |α, β, γ〉 = (−1)α·β·γ |α, β, γ〉. Both |ψ1C〉
and |ψUJ〉 possess distinctive “fractional symmetries”, leav-
ing them invariant under X applied to all qubits on sites of
a single color (A, B, or C). Replacing the (d − 1)-controlled
Z gates by unitaries U(ωd) parameterized by d-cocycles of a
group G, we obtain the cocycle states of [23]. Cocycle states
with fractional symmetry can be graphically represented by
expanding every vertex into a collection of virtual qubits, and
expanding every entangling gate into a product of CZ’s or
CCZ’s (see Figure 2).

nomenon in many-body systems with global symmetry
G, which will always be abelian here. An SPTO phase
is the collection of all many-body states connected to
some fiducial short-range entangled state using only con-
stant depth quantum circuits built from constant range,
symmetry-respecting gates. The trivial SPTO phase is
the unique phase containing unentangled product states.
Nontrivial SPTO consequently represents a form of per-
sistent many-body entanglement, protected by a symme-
try group G.

SPTO phases can be classified using group cohomol-
ogy theory [23]. For 2D states, SPTO phases rela-
tive to G correspond to elements of the third coho-
mology group of G, H3(G,U(1)). We can analyze
H3(G,U(1)) using 3-cocycles, complex-valued functions
ω3(g1, g2, g3) : G3 → U(1) which satisfy the condi-
tion ∂3ω3(g0, g1, g2, g3) := ω3(g1, g2, g3)ω∗3(g0g1, g2, g3)
ω3(g0, g1g2, g3)ω∗3(g0, g1, g2g3)ω3(g0, g1, g2) = 1, for all
g0, g1, g2, g3 ∈ G. Each 3-cocycle ω3 lies in a unique
“cohomology class”, [ω3]G ∈ H3(G,U(1)), where the co-
homology class of the function ω3(g1, g2, g3) = 1 is the
trivial SPTO phase. In general d ≥ 1 spatial dimensions,
SPTO phases are classified by Hd+1(G,U(1)).

Cocycle States.—While the correspondence between
SPTO phases and cohomology classes may appear ob-
scure, it lets us construct useful SPTO fixed-point states
using the cocycle state model of [23]. This model con-
verts abstract d-cocycles ωd of G into d-body unitary
gates U(ωd), which then form many-body states |ψ(ωd)〉
in d − 1 spatial dimensions. These states have global

symmetry G, and belong to the SPTO phase associated
with [ωd]G. We discuss only the 2D case (d = 3), but
this method extends to any d ≥ 1 spatial dimensions.

For any G, |ψ(ω3)〉 is made of |G|-dimensional qudits
on a 2D lattice Λ without boundaries. On-site symmetry
operators Xg act in a generalized computational basis as
Xg|h〉 = |gh〉, ∀g, h ∈ G. When G = (Z2)m, a generating
set for G (explained below) lets us represent each qudit
as m “virtual” qubits, on which Xg =

⊗m
i=1(Xi)

gi . We
visualize these qubits stacked in vertical layers, from i =
1 (top) to i = m (bottom). The state |+G〉 = |+〉⊗m is
the unique +1 eigenstate state of every Xg.

ω3 sets the eigenvalues of our entangling unitary U(ω3),
as U(ω3) =

∑
g,h,f∈G ω3(g, g−1h, h−1f) |g, h, f〉〈g, h, f |.

We form |ψ(ω3)〉 from |+G〉 states on every vertex
of a 3-colorable lattice, with U(ω3) (or U(ω3)†) ap-
plied to all nearest-neighbor triples of qudits ∆3. The
three arguments g, h, f match the three qudits in ∆3

according to their lattice colors. Overall, |ψ(ω3)〉 =(∏
∆3∈Λ U(ω3)±1

∆3

)
|+G〉⊗n, where the alternation of

U(ω3) and U(ω3)† is described in [23].

The 1D cluster state and Union Jack state are
both G = Z2 cocycle states, with respective cocycles

ω
(1C)
2 (g, h) = (−1)g·h and ω

(UJ)
3 (g, h, f) = (−1)g·h·f (c.f.

Appendix B of [19]). However, these states both possess
additional “ 1

d” fractional symmetry, arising from Xg ap-
plied to spins of a single vertex color on a d-colorable
lattice. As we show below, this fractional symmetry is
connected to each cocycle being a d-linear function, some-
thing we define explicitly for d = 3.

A function τ3(g, h, f) : G3 → U(1) is 3-linear (trilin-
ear) when it satisfies τ3(gg′, h, f) = τ3(g, h, f)τ3(g′, h, f),
and similarly for its other two arguments. Every trilin-
ear function is a 3-cocycle, but one possessing additional
algebraic structure. This lets us efficiently describe τ3
by choosing a generating set for G = (Z2)m, namely a
collection of m elements {ei}mi=1 ⊆ G by which every
g ∈ G is g =

∏m
i=1(ei)

gi for a unique choice of binary
coordinates gi. Given a fixed generating set, we have
τ3(g, h, f) = (−1)

∑m
i,j,k=1 τ̂3(i,j,k)·gi·hj ·fk , where i, j, k in-

dex the generators of (Z2)m, and τ̂3(i, j, k) is a binary
“component” of τ3 encoding the value of τ3(ei, ej , ek).
These components form an m×m×m binary tensor τ̂3,
whose transformation under index-dependent changes of
generating set will concern us below. We can similarly
define 2-linear (bilinear) functions τ2(g, h), described by
m×m binary component matrices τ̂2(i, j). For more in-
formation on group cohomology, the cocycle state model,
and the formulation of so-called stabilizer states as exam-
ples of cocycle states, see Appendix B.

Cocycle States with Fractional Symmetry.—Given the
fractional symmetry of the 1D cluster state and Union
Jack state, we ask how this symmetry orders the entan-
glement of general many-body states. Our main results
form a largely exhaustive answer to this question for 1D
2-cocycle states and 2D 3-cocycle states. We first show
that any 1

d -symmetric cocycle state with d = 2 or 3 and
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G = (Z2)m is either a trivial product state, or is reducible
by local operations to several disjoint copies of the 1D
cluster state or the Union Jack state, respectively. For
d = 2, this characterization is complete, in that every
nontrivial 1

2 -symmetric cocycle state |ψ(ω2)〉 is isomor-
phic to r copies of |ψ1C〉, for an ω2-dependent r ≥ 1.
When d = 3 however, we show that general 1

3 -symmetric
cocycle states with G = (Z2)m are isomorphic to r “irre-
ducible” 3-cocycle states, of which the Union Jack state
is the simplest. This proves that all nontrivial 3-cocycle
states with 1

3 -symmetry and G = (Z2)m are Pauli uni-
versal MQC resource states, identifying a robust corre-
spondence between fractional symmetry and the utility
of many-body states for quantum computation.

We first characterize the algebraic properties of cocycle
states with 1

d -symmetry. We show that for d = 2 and

3, d-cocycle state with 1
d -symmetry are precisely those

generated by d-linear functions (Lemma 1).

Lemma 1. Let |ψ(ωd)〉 be a d-cocycle state defined on a
d-colorable (d−1)-dimensional lattice without boundaries,
generated by a d-cocycle ωd with d = 2, 3. |ψ(ωd)〉 is 1

d -
symmetric, i.e. is invariant under the application of G
to all sites of any one of the d lattice colors, if and only
if it is generated by a unique d-linear function τd, so that
|ψ(ωd)〉 = |ψ(τd)〉.
Lemma 1’s statement can be generalized to arbitrary
d, but due to our focus on low-dimensional MQC re-
source states, this generalized version remains a con-
jecture. Proving that d-linear cocycle states possess 1

d -
symmetry is trivial, so we focus on the reverse implica-
tion. Our proof analyzes the action of fractional symme-
try operators on local regions of a d-cocycle state |ψ(ωd)〉,
and iteratively builds up necessary conditions for |ψ(ωd)〉
to possess 1

d -symmetry. This shows that ωd is the prod-
uct of a unique d-linear τd with additional terms acting
on the boundaries of our system, proving our result. The
full proof of Lemma 1 is given in Appendix C.

The specification of d-linear τd’s using component ten-
sors τ̂d lets us decompose U(τd) into a product of d-qubit
component unitary gates, one for each nonzero compo-
nent of τ̂d. When G = (Z2)m and d = 2 or 3, these com-
ponent gates are CZ or CCZ, which shows each |ψ(τd)〉
to be a so-called hypergraph state [46–48]. This decom-
position of U(τd) into CZ or CCZ gates requires a choice
of generating set for each vertex color of our d-colorable
lattice, with changes of generating set acting as gauge
freedoms in the description of |ψ(τd)〉. We can fix these
spurious degrees of freedom by enumerating the local uni-
tary orbits of |ψ(τd)〉 under color-dependent changes of
basis, which reduces to finding a normal form for our
component tensor τ̂d.

For 1D and 2D states, this classification reduces to that
of irreducible 1

d -symmetric cocycle states |ψ(γi)〉 (defined
below), as given in Theorem 1.

Theorem 1. Let |ψ(τd)〉 be a nontrivial 1
d -symmetric

d-cocycle state without boundaries in d−1 spatial dimen-
sions, with global symmetry G = (Z2)m and d = 2, 3.

By an appropriate color-dependent change of basis, there
is a unique r with 1 ≤ r ≤ m such that the nontrivial
portion of |ψ(τd)〉 is isomorphic to r disjoint irreducible
1
d -symmetric cocycle states, i.e.

⊗r
i=1 |ψ(γi)〉.

We let ζd(m) denote the number of distinct irreducible
d-cocycle states in G = (Z2)m, which is calculated using
the component tensors τ̂d. When d = 2, we reduce τ̂2 to
normal form using color-dependent changes of generating
set on lattice colors A,B, transforming τ̂2 to χTAτ̂2χB
with invertible binary matrices χA, χB . Choosing χA and
χB to implement elementary row and column operations,
we can transform τ̂2 into a diagonal normal form using
Gaussian elimination. This gives U(τ2) as a product of
disjoint CZ gates forming r disjoint copies of |ψ1C〉, with
r the rank of τ̂2 (see Figure 2a). This proves Theorem 1
for d = 2, and shows also that ζ2(m) = 1 for all m,
meaning the 1D cluster state is the unique irreducible
cocycle state in 1D.

When d = 3, our formation unitaries U(τ3) correspond
to 3-index component tensors τ̂3, which are harder to
characterize. Similar to our d = 2 proof, color-dependent
changes of basis let us rewrite τ̂3 as a collection of r irre-
ducible tensors, which form the r irreducible 1

3 -symmetric
cocycle states in Theorem 1. More precisely, τ̂3 is irre-
ducible when it cannot be written as the sum of two
nonzero tensors with disjoint supports at every index.
In d = 3 however, there is no known analog of Gaus-
sian elimination to efficiently decompose τ̂3 into irre-
ducible tensors. Nonetheless, we show in Appendix D3
that there is still a normal form letting us prove Theo-
rem 1 for d = 3. Consequently, the behavior of general
1
3 -symmetric cocycle states depends only on the behavior
of general irreducible cocycle states.

In the simplest case of m = 1, the only nontrivial trilin-

ear function is ω
(UJ)
3 (defined previously), showing that

ζ3(1) = 1. In contrast to the 1D case though, in 2D we
find many different irreducible cocycle states, the sim-
plest being shown in Figure 2c. A numerical search shows
that ζ3(2) = 4 and ζ3(3) = 50, and we expect infinitely
many irreducible states to appear in general (Z2)m. De-
spite this difficulty, every irreducible 1

3 -symmetric cocy-
cle state should clearly contain at least as much usable
entanglement as the Union Jack state, which lets us prove
a useful operational corollary to Theorem 1 for d = 3.

Corollary 1. Let |ψ(τ3)〉 be a nontrivial 1
3 -symmetric

3-cocycle state with global symmetry group (Z2)m defined
on a Union Jack lattice. By appropriate color-dependent
changes of basis and non-adaptive single-qubit Z mea-
surements, |ψ(τ3)〉 can be reduced to r disjoint copies of
the Union Jack state, for the same state-dependent r ≥ 1
as in Theorem 1. Consequently, |ψ(τ3)〉 is a Pauli uni-
versal resource state for MQC.

We prove Corollary 1 by showing that any irreducible
|ψ(γi)〉 is equal in some color-dependent change of gener-
ating set to a single copy of the Union Jack state, which
is disjoint or “vertex entangled” with all other virtual
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FIG. 2. (a) Fixing a G = (Z2)m generating set at sites A and B lets us represent the entangling gates U(τ2) forming our 1
2
-

symmetric 2-cocycle state using an m×m binary component matrix, τ̂2. Nonzero entries of τ̂2 give CZ gates between adjacent
virtual qubits. Color-dependent changes of generating set (corresponding to color-dependent changes of basis on the single-spin
Hilbert spaces), enact Gaussian elimination, reducing τ̂2 to a diagonal normal form in which our state is simply r = rank(τ̂2)
disjoint 1D cluster states. Here, m = 3 and r = 2. (b) In 2D, we again use color-dependent changes of generating set to simplify
our state, but now represent 3-body entangling gates U(τ3) as 3-index binary component tensors, τ̂3 (not shown). Nonzero
entries of τ̂3 give CCZ gates between triples of virtual qubits. Our normal form reduces this state to r disjoint irreducible
3-cocycle states, where again m = 3 and r = 2. (c) Representatives of the ζ3(2) = 4 irreducible 3-cocycle states which exist in
G = (Z2)2. Theorem 1 proves that any 1

3
-symmetric 3-cocycle state with G = (Z2)m is either trivial, isomorphic to one of these

states (up to permutation of lattice colors), or isomorphic to two disjoint copies of the Union Jack state (the only irreducible

state in Z2). An exhaustive numerical search shows that of the 2m
3

= 227 possible 1
3
-symmetric cocycle states in G = (Z2)3,

there exist only ζ3(3) = 50 distinct irreducible states up to local changes of basis. However, a precise classification of irreducible
cocycle states is unnecessary for our purposes, since every irreducible state is a Pauli universal resource state (Corollary 1).

qubits. This guarantees that measuring Z on the other
virtual qubits leaves only the Union Jack state, up to
trivial Pauli byproduct operators. Applying this proto-
col to each irreducible |ψ(γi)〉 in Theorem 1 then proves
Corollary 1. Further details are given in Appendix D2.

Having discussed the general classification and compu-
tational power of low-dimensional 1

3 -symmetric cocycle
states |ψ(τ3)〉, we now study their SPTO phases relative
to the fractional symmetry group G 1

3
. This classifica-

tion relative to G 1
3

then determines the SPTO phase of

|ψ(τ3)〉 relative to any subgroup of G 1
3
, including the

usual global symmetry G. While G 1
3
' G3 as groups,

they differ operationally by the former arranging each
copy of G on a distinct vertex color (“horizontally”), and
the latter arranging each copy on a distinct layer of a sin-
gle vertex (“vertically”). This allows a simple character-
ization of the SPTO present in these states (Theorem 2).

Theorem 2. Let |ψ(τ3)〉 , |ψ(τ ′3)〉 be two 1
3 -symmetric 2D

3-cocycle states with global symmetry group G, where τ3
and τ ′3 are trilinear functions. If τ3 6= τ ′3, then |ψ(τ3)〉
and |ψ(τ ′3)〉 belong to different SPTO phases relative to
G 1

3
. In particular, if τ3 is nontrivial, then |ψ(τ3)〉 pos-

sesses nontrivial SPTO relative to G 1
3
.

We prove Theorem 2 by embedding each 3-cocycle

state |ψ(τ3)〉 into a larger Hilbert space associated with
G3, where the original G 1

3
fractional symmetry of |ψ(τ3)〉

is simulated using an operationally equivalent G3 global
symmetry. This lets us use a known classification of 2D
SPTO phases relative to global G3 symmetry to iden-
tify each component of τ̂3 as a unique label of the SPTO
phase of |ψ(τ3)〉, relative to G 1

3
. Consequently, two states

|ψ(τ3)〉 , |ψ(τ ′3)〉 are in the same SPTO phase only when
their associated tensors τ̂3, τ̂

′
3 are identical, which proves

Theorem 2. Further details of our proof are given in Ap-
pendix D3.

Outlook.—We have shown that computationally uni-
versal entanglement is a ubiquitous property of fixed-
point states of SPTO with fractional symmetry. While
we were able to obtain “exact” universal resource states
in our simple setting of fixed-point model states, more
general states with SPTO may require renormalization-
style techniques like those of [34, 37, 39, 40] to extract
their usefulness for MQC, as discussed in more detail in
Appendix A. Overall, we expect fractional symmetry to
be a powerful tool for guaranteeing certain operational
capabilities in more general quantum information pro-
cessing tasks, such as quantum simulation [49, 50] and
fault-tolerant quantum computation [51–53].
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