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Recent experiments demonstrate the importance of substrate curvature for actively forced fluid
dynamics. Yet, the covariant formulation and analysis of continuum models for non-equilibrium
flows on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized
covariant Navier-Stokes model for fluid flows driven by active stresses in non-planar geometries. The
analytical tractability of the theory is demonstrated through exact stationary solutions for the case
of a spherical bubble geometry. Direct numerical simulations reveal a curvature-induced transition
from a burst phase to an anomalous turbulent phase that differs distinctly from externally forced
classical 2D Kolmogorov turbulence. This new type of active turbulence is characterized by the
self-assembly of finite-size vortices into linked chains of anti-ferromagnetic order, which percolate
through the entire fluid domain, forming an active dynamic network. The coherent motion of the
vortex chain network provides an efficient mechanism for upward energy transfer from smaller to
larger scales, presenting an alternative to the conventional energy cascade in classical 2D turbulence.

Substrate geometry profoundly affects dynamics and
energy transport in complex fluids flowing far from equi-
librium [1–3]. Examples range from magnetohydrody-
namic turbulence on stellar surfaces [1] to the rich mi-
croscale dynamics of topological defects in active nematic
vesicles [2, 3]. Studying the interplay between spatial
curvature and actively driven fluid flows is also essential
for understanding microbial locomotion [4], biofilm for-
mation [5] and bioremediation [6] in soils [7], tissues [8]
and water [9–11]. Over the past two decades, important
breakthroughs have been made in characterizing active-
stress driven matter flows in planar Euclidean geometries
both theoretically [12–15] and experimentally [16–18].
More recently, theoretical work has begun to focus on
incorporating curvature effects into active matter mod-
els [19–25]. Despite some promising progress, the hydro-
dynamic description of pattern-forming non-equilibrium
liquids in non-Euclidean spaces continues to pose concep-
tual challenges, attributable to the difficulty of formu-
lating exactly solvable continuum models and devising
efficient spectral methods in curved geometries.

Aiming to help improve upon these two issues, we
introduce and investigate here the covariant extension
of a generalized Navier-Stokes (GNS) model [26–29] de-
scribing incompressible active fluid flow on an arbitrar-
ily curved surface. Focusing on a spherical ‘bubble’ ge-
ometry, we derive exact stationary solutions and nu-
merically explore the effects of curvature on the steady-
state flow dynamics, using the open-source spectral code
Dedalus [30]. The numerically obtained phase diagrams,
energy spectra and flux curves predict an anomalous tur-
bulent phase when the spectral bandwidth of the active
stresses becomes sufficiently narrow. This novel type
of 2D turbulence supports an unexpected upward en-

ergy transfer mechanism, mediated by the large-scale
collective dynamics of self-organized vortex chains, akin
to actively moving anti-ferromagnetic spin chains. At
high curvature, the anomalous turbulence transforms
into a quasi-stationary burst phase, whereas for broad-
band spectral forcing the flow dynamics transitions to
classical 2D Kolmogorov turbulence, accumulating en-
ergy in a few large-scale vortices. We next motivate and
define the covariant GNS model for an arbitrary 2D sur-
face; analytical and numerical results for the sphere case
will be discussed subsequently.

Recent experiments have investigated the collective dy-
namics of swimming bacteria [16] and algae [31] in thin
quasi-2D soap films held by a coplanar wire frame. Gen-
eralizing to non-Euclidean geometries [2, 3], which can
be realized with soap bubbles or curved wire frames [32],
we consider here a free-standing non-planar 2D film in
which the fluid flow is driven by active stresses, as in
suspensions of swimming bacteria [33, 34] or ATP-driven
microtubule networks [35, 36]. On a curved manifold, the
fluid velocity field components va satisfy incompressibil-
ity and Cauchy momentum conservation [37, 38],

∇ava = 0, (1a)

∂tv
a + vb∇bva = ∇aσ +∇bT ab, (1b)

where ∇bva denotes the covariant derivative of va, a, b =
1, 2 and σ is the (surface) tension. The stress tensor T ab

includes passive and active contributions from the solvent
fluid viscosity and the stresses exerted by the microswim-
mers on the fluid. Below, we study the covariant version
of the linear active-stress model [26–29]

T ab = f(∇2)(∇aub +∇bua), (1c)

f(∇2) = Γ0 − Γ2∇2 + Γ4∇2∇2,
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where ∇2 = ∇a∇a is the tensor Laplacian. In quali-
tative agreement with experimental observations for ac-
tive suspensions [16, 18, 36, 39], the polynomial ansatz
for f in Eq. (1c) generates vortices of characteristic size
Λ and growth time τ , provided that Γ2 < 0, which in-
troduces a bandwidth κ of linearly unstable modes [28].
General mathematical stability considerations demand
Γ0,Γ4 > 0. The phenomenological model (1) is mini-
mal in the sense that it assumes the active stresses cre-
ate to leading order a linear instability, while neglecting
energy transfer within the active component. As veri-
fied in Ref. [29], the linear active-stress model (1c) suf-
fices to quantitatively reproduce the experimentally mea-
sured velocity distributions and flow correlations in 3D
bacterial [18] and ATP-driven microtubule [36] suspen-
sions. More generally, closely related GNS models have
also been studied in the context of soft-mode turbulence
and seismic waves [26, 27]. Numerical solutions of the
GNS Eqs. (1) show significant phenomenological similar-
ities with magneto-hydrodynamic (MHD) flows driven by
electromagnetic stresses [40], suggesting that the results
below may also apply to astrophysical systems.

Exact stationary solutions of Eqs. (1) for a sphere of
radius R can be constructed from the vorticity-stream
function formulation (SM [41])

∆ψ = −ω, (2a)

∂tω + {ω, ψ} = f(∆ + 4K)(∆ + 2K)ω, (2b)

where ψ and ω are the stream function and vorticity.
The advection term in spherical coordinates (θ, φ) reads
{ω, ψ} = (∂θω∂φψ−∂φω∂θψ)/(R2 sin θ). K = R−2 is the
Gaussian curvature and ∆ the standard spherical Lapla-
cian. Since the spherical harmonics Y m` diagonalize the
Laplacian, ∆Y m` = −R−2`(` + 1)Y m` for integers `, m
such that ` ≥ 0 and |m| ≤ `, an arbitrary superposition

ψ =
∑
|m|≤`

ψm`Y
m
` (3)

solves the system (2) exactly, provided that the eigen-
value ` is an integer root of f(−`(`+1)+4) = 0 (SM [41]).
As usual, the velocity field is tangent to the level sets of
the stream function. Two particular exact solutions are
shown in Fig. 1. The first example, Fig. 1(a), is reminis-
cent of the square lattice solutions found earlier in the flat
2D case [28]. The second example in Fig. 1(b) illustrates
a flow field with five-fold symmetry, obtained by apply-
ing the superposition procedure of Ref. [42]. Although
these exact solutions are not stable, they provide some
useful intuition about the instantaneous flow patterns ex-
pected in dynamical simulations (Fig. 2), similar to exact
coherent structures [43] in conventional turbulence [44].

To find and analyze time-dependent solutions of
Eqs. (1), we performed numerical simulations using
Dedalus [30], an open-source framework for solving dif-
ferential equations with spectral methods. The equa-
tions (1) were solved directly as a coupled partial
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FIG. 1. Stationary solutions of Eqs. (2) are superpositions
of the form (3) with f(−`(` + 1) + 4) = 0. (a) An exact
stationary solution with ` = 6 which is also approximately
realized as a transient state in the time-dependent burst so-
lution of Fig. 2 (Movie 1). (b) Complex symmetric solutions
can be constructed by choosing the expansion coefficients ψm`

accordingly [42]. In both panels, the stream functions are nor-
malized by their maxima; see SM [41] for coefficients ψm`.

differential-algebraic system for the scalar tension σ and
vector velocity va. To spatially discretize the system, we
used spin-weighted spherical harmonics, which are a pa-
rameterized family of basis functions that correctly cap-
ture the analytical behavior of spin-weighted functions
on the sphere (SM [41]). Under this spectral expansion,
the system (1) is reduced to a set of coupled ordinary
differential-algebraic equations for the time evolution of
the expansion coefficients. We solve these equations us-
ing mixed implicit-explicit timestepping, in which the lin-
ear terms of the evolution equations are integrated im-
plicitly, the linear constraints are enforced implicitly, and
the nonlinear terms are integrated explicitly. This allows
us to simultaneously evolve the velocity field while enforc-
ing the incompressibility constraint, and with a timestep
that is limited by the advective Courant-Friedrichs-Lewy
time condition rather than the diffusive time at any scale.

The parameters (Γ0,Γ2,Γ4) in Eqs. (1) define a char-
acteristic time scale τ , a characteristic vortex diame-
ter Λ, and a characteristic spectral bandwidth κ, which
can be directly inferred from experimental data [29]; ex-
plicit expressions are derived in the SM [41]. Given a
sphere of radius R, fixing (τ,Λ, κ) uniquely determines
the parameters (Γ0,Γ2,Γ4). To explore the interplay be-
tween curvature and activity, we run 351 simulations,
using R/Λ ∈ [2, 10] and κ · Λ ∈ [0.1, 2.0]. Typical
vortex diameters for bacterial and microtubule suspen-
sions are Λ ∼ 50 − 100 µm with τ of the order of sec-
onds [16, 18, 36, 39]. Time steps were in the range
[5 · 10−4τ, 5 · 10−3τ ] with a total simulation time 100τ ,
allowing the system to fully develop its dynamics after
an initial relaxation phase during which active stresses
inject energy until the viscous dissipation and activity
balance on average. In the remainder, it will be conve-
nient to regard Λ as reference length and compare the
flow topologies across the (κ,R) parameter plane.

Our simulations reveal three qualitatively distinct
flow regimes (Fig. 2): a quasi-stationary burst phase
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FIG. 2. Phase diagrams (a,b) and representative still images (c-e) from simulations showing quasi-stationary burst dynamics
(B-phase), anomalous vortex-network turbulence (A-phase), and classical 2D turbulence (T-phase). (a,b) The A- and T-phase
are approximately separated by the condition κΛ = 1 (vertical dashed line) and differ by the average number of vortices (a), the
branch geometry of the tension field (b), and the energy spectra (Fig. 3). The B-phase arises for narrowband energy injection
κR . 1 when only a single `-mode is active (region right below the dashed-dotted line); decreasing κ further gives a passive
fluid (white region). (c-e) Top: Instantaneous vorticity fields normalized by their maxima. Bottom: Surface tension fields
normalized by the maximum deviation from the mean. (c) Quasi-stationary pre-burst state from Movie 1 resembling the exact
solution in Fig. 1(a); see Movies 2 and 3 for additional examples labeled by ∗ in panel (a). (d) For subcritical curvature and
intermediate energy injection bandwidths, R−1 < κ < Λ−1, the flows develop a percolating vortex-chain network structure
(Movie 4), with accumulation of tension and vorticity along the edges. (e) For broadband energy injection κΛ > 1, smaller
eddies merge to create larger vortices, as typical of classical 2D turbulence (Movie 5). Parameters: (a) αω = 0.5; (c) R/Λ = 2,
τ = 4.9 s, κΛ = 0.29; (d) R/Λ = 10, τ = 14.9 s, κΛ = 0.5; (e) R/Λ = 10, τ = 11.7 s, κΛ = 2.0. Panels (a, b) show steady-state
time averages over [50τ, 100τ ]. Solid curves in (c-e) indicate stream lines of the velocity fields.

for κR . 1 [domain B in Fig. 2(a); Movies 1-3], an
anomalous turbulence for R−1 < κ < Λ−1 [domain A in
Fig. 2(a); Movie 4], and normal 2D turbulence for κΛ > 1
[domain T in Fig. 2(a); Movie 5]. Representative vortic-
ity and tension fields from the corresponding steady-state
dynamics are shown in Fig. 2(c-e).

In the B-phase, the energy injection bandwidth κ is
close to the wavenumber spacing set by the sphere cur-
vature R−1, leaving only a single active wavenumber `.
Decreasing κ further completely suppresses active modes
resulting in globally damped fluid motion [white domain
in Fig. 2(a)]. The B-phase is characterized by the forma-
tion of intermittent quasi-stationary flow patterns that
lie in the vicinity of the exact stationary solutions (3), cf.
Figs. 1(a) and 2(c). Once formed, the amplitude of these
flow patterns grows exponentially (Fig. S3) until nonlin-
ear advection becomes dominant and eventually causes
energy to be released through a rapid burst. Afterwards,
the dynamics becomes quasi-linear again with the flow
settling into a new quasi-stationary pattern. These burst
cycles are continuously repeated (Movies 1-3).

The two turbulent phases A and T in Fig. 2(a) can be
distinguished through topological, geometric and spec-

tral measures. We demonstrate this by determining the
topology of the vorticity fields, the geometry of the high-
tension domains and the energy spectra for each simula-
tion after flows had reached the chaotic steady-state.

To study the vortex topology, we fix a threshold αω ∈
[0, 1] and identify regions in which the vorticity is larger
(or smaller) than αω times the maximum (or minimum)
vorticity (SM [41]). This thresholding divides the sphere
into patches of high absolute vorticity (Fig. S1). The
number of connected domains, given by the zeroth Betti
number, counts the vortices in the system. For a fixed
pair (κ,R), we denote the vortex number at time t by
Nω(κ,R; t). Although more sophisticated methods for
vortex detection exist [45], the thresholding criterion
proved to be sufficient for our analysis (Fig. S2). To
normalize vortex numbers across the parameter space,
we fix a reference value κ∗ = 0.3/Λ. With this, we can
define a normalized Betti number as

Bettiω(κ,R) =
〈Nω(κ,R; t)−Nω(κ∗, R; t)〉

〈Nω(κ∗, R; t)〉
, (4)

where the time average 〈 · 〉 is taken after the initial re-
laxation period. Intuitively, large values of Bettiω in-
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dicate many vortices of comparable circulation, whereas
small values suggest the presence of a few dominant ed-
dies. The variation of Bettiω in the (κ,R)- parameter
plane is color-coded in Fig. 2(a). In the anomalous tur-
bulent A-phase, vortices of diameter ≈Λ eventually cover
the surface of the sphere, with stronger vortices forming
chains of anti-ferromagnetic order [Fig. 2(d) top; Movie
4]. By contrast, in the T-phase characterized by broad-
band energy injection κ > Λ−1, smaller eddies merge
to create a small number of larger vortices, as typical
of classical 2D turbulence [46] [Fig. 2(e) top; Movie 5].
Interestingly, the A-phase shares phenomenological sim-
ilarities with the low-entropy states found in quasi-2D
superfluid models [47], while the vortex-condensation in
the T-phase corresponds approximately to the negative
“temperature” regime in Onsager’s statistical hydrody-
namics [48]. Moreover, the upper region of Fig. 2(a),
which corresponds to the small-curvature limit R/Λ� 1,
suggests that the two phases extend to planar geometries,
provided boundary effects remain negligible.

To obtain a more detailed geometric characterization
of the turbulent A- and T-phases, we next consider the
corresponding tension fields. Analogously to the case
of vorticity above, we focus on regions where the local
tension σ(t,x) is larger than the instantaneous global
mean value. For each connected component of the iden-
tified high-tension regions, we denote by A its total area
and by ∂A its total boundary area in pixels. The ratio
∂A/A is a measure of chain-like structures in the tension
fields, a large value signaling a highly branched structure,
whereas smaller values indicate less branching. Denoting
the instantaneous sum of the ratios ∂A/A over all con-
nected high-tension domains by Aσ(κ,R; t), a normalized
branching index can then be defined by (SM [41])

Branchσ(κ,R) =
〈Aσ(κ,R; t)−Aσ(κ∗, R; t)〉

〈Aσ(κ∗, R; t)〉
, (5)

where the time average is again taken after the initial re-
laxation. As evident from the phase diagram in Fig. 2(b)
and the corresponding tension fields in Fig. 2(d,e) and
Movies 4,5, the geometric characterization confirms the
existence of an anomalous turbulent phase, in which vor-
tices combine to form percolating dynamic networks with
high-tension being localized along the edges [Fig. 2(d)
bottom; Movie 4].

To compare the energy transport in the anomalous tur-
bulent phase with classical 2D turbulence, we analyze the
energy spectra and fluxes for the A- and T-phases. Ex-
panding in spherical harmonics, ψ =

∑
m,` ψm`Y

m
` , the

energy of mode ` is E(`) =
∑
|m|≤` `(` + 1)|ψm`|2. The

corresponding mean energy flux across ` in the statisti-
cally stationary state is obtained as (SM [41])

Π(`) = −2
∑
`′≥`

f [4− `′(`′ + 1)][2− `′(`′ + 1)]〈E`′〉, (6)
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FIG. 3. Time-averaged energy spectra and fluxes indicate
two qualitatively different types of upward energy transport.
(a) For narrowband energy injection κΛ < 1, the energy spec-
trum exhibits a peak corresponding to the dominant vortex
size Λ (red curve). For broadband injection κΛ ∼ 2, the
spectra decay monotonically (blue and black curves). (b) In
all four examples, the fluxes confirm inverse energy trans-
port, albeit with different origins. For broadband energy in-
jection (blue and black curves), the upward energy flux to
larger scales is due to vortex mergers [Fig. 2(e); Movie 5]. By
contrast, for narrowband injection (red curve), a relatively
stronger upward energy flux arises from the collective mo-
tion of vortex chains [Fig. 2(d); Movie 4]. The shaded re-
gions indicate the energy injection ranges with colors match-
ing those of the corresponding curves, respectively. Param-
eters: R/Λ = 10 for a unit sphere, τ = 11.7s, time step
5 ·10−4τ , total simulation time 500τ . Spectra and fluxes were
determined after relaxation by averaging over [150τ, 500τ ].
For κΛ � 1, energy steadily accumulates at larger scales and
the absence of a large-scale dissipative mechanism leads to a
divergent total enstrophy and kinetic energy on the sphere.

where f is the polynomial defined in Eq. (1c). Figure 3
shows the numerically obtained energy spectra E(`) and
fluxes Π(`) for four active bandwidths κ. In all four
cases, the kinetic energy produced in the injection range
(` ∼ πR/Λ) propagates to both large (` < πR/Λ) and
small (` > πR/Λ) scales, as indicated by negative and
positive values of Π(`), respectively. Energy transfer to
large scales is a prominent feature of classical 2D turbu-
lence [46, 49, 50] and our results show that it also occurs
in active turbulence. However, the transfer mechanisms
can be dramatically different, as already implied by the
preceding analysis of the vorticity and tension fields. For
broadband spectral forcing κΛ� 1, the classical 2D tur-
bulence picture of vortex mergers and energy conden-
sation at large scales prevails [Fig. 2(e); Movie 3]. For
κΛ . 2 the spectrum follows a k−1-scaling, indicating the
formation of a dilute-vortex system [51]. For even larger
values of κ, additional large-scale dissipation is needed
to bound the upward energy transfer, in which case the
spectrum is expected to approach the Kolmogorov k−5/3-
scaling [46]. By contrast, for narrowband driving κΛ . 1,
the upward energy transfer is realized through the coher-
ent motion of high-tension vortex chains. Interestingly,
only this anomalous type of inverse energy cascade ap-
pears to persist in 3D active bulk fluids [29], where it is
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sustained by spontaneous chiral symmetry-breaking [52].

In summary, we have presented analytical and nu-
merical solutions for generalized Navier-Stokes equations
describing actively driven non-equilibrium flows on a
sphere. Our calculations predict that spectrally local-
ized active stresses can induce a novel turbulent phase,
in which finite-size vortices self-organize into chain com-
plexes of anti-ferromagnetic order that percolate through
the surface [53]. The collective motion of these chain
networks enables a significant upward energy transport
and may thus provide a basis for efficient fluid mixing in
quasi-2D active and magnetohydrodynamic flows. Future
generalizations to rotating spheres could thus promise
insights into pattern formation in planetary and stellar
atmospheres [54] .
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[23] F. Alaimo, C. Köhler, and A. Voigt, Sci. Rep. 7, 5211
(2017).

[24] Y. Fily, A. Baskaran, and M. F. Hagan, Soft Matter 10,
5609 (2014).

[25] Y. Fily, A. Baskaran, and M. F. Hagan, Phys. Rev. E
91, 012125 (2015).

[26] I. A. Beresnev and V. N. Nikolaevskiy, Physica D 66, 1
(1993).

[27] M. I. Tribelsky and K. Tsuboi, Phys. Rev. Lett. 76, 1631
(1996).

[28] J. S lomka and J. Dunkel, Phys. Rev. Fluids 2, 043102
(2017).

[29] J. S lomka and J. Dunkel, Proc. Nat. Acad. Sci. U.S.A.
114, 2119 (2017).

[30] K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, B. P.
Brown, and E. Quataert, in preparation (2017).

[31] J. S. Guasto, K. A. Johnson, and J. P. Gollub, Phys.
Rev. Lett. 105, 168102 (2010).

[32] R. E. Goldstein, J. McTavish, H. K. Moffatt, and A. I.
Pesci, Proc. Nat. Acad. Sci. U.S.A. 111, 8339 (2014).

[33] E. Lauga and T. R. Powers, Rep. Prog. Phys. 72, 096601
(2009).

[34] K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and
R. E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 108, 10940
(2011).

[35] S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1,
323 (2010).

[36] T. Sanchez, D. T. N. Chen, S. J. DeCamp, M. Heymann,
and Z. Dogic, Nature 491, 431 (2012).

[37] L. E. Scriven, Chem. Eng. Sci. 12, 98 (1960).
[38] R. Aris, Vectors, tensors and the basic equations of fluid

mechanics (Dover Publications, Inc., New York, 1989).
[39] C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Gold-

stein, and J. O. Kessler, Phys. Rev. Lett. 93, 098103
(2004).

[40] G. M. Vasil and M. G. P. Cassell, in preparation.
[41] See Supporting Material, which contains Refs. [55–59].
[42] W. Prandl, P. Schiebel, and K. Wulf, Acta Crystallogr.

Sect. A 52, 171 (1996).
[43] F. Waleffe, J. Fluid Mech. 435, 93 (2001).
[44] F. Waleffe, in Turbulence and Interactions, Notes on Nu-

merical Fluid Mechanics and Multidisciplinary Design,
Vol. 105, edited by M. Deville, T. H. Lê, and P. Sagaut
(Springer, Berlin, Heidelberg, 2009).

[45] M. Jiang, R. Machiraju, and D. Thompson, in The Vi-
sualization Handbook, edited by C. D. Hansen and C. R.
Johnson (Academic Press, 2011).

http://www.jstor.org/stable/2482218
http://www.jstor.org/stable/2482218
http://www.sciencemag.org/content/284/5418/1318.abstract N2 - Bacteria that attach to surfaces aggregate in a hydrated polymeric matrix of their own synthesis to form biofilms. Formation of these sessile communities and their inherent resistance to antimicrobial agents are at the root of many persistent and chronic bacterial infections. Studies of biofilms have revealed differentiated, structured groups of cells with community properties. Recent advances in our understanding of the genetic and molecular basis of bacterial community behavior point to therapeutic targets that may provide a means for the control of biofilm infections.


6

[46] G. Boffetta and R. E. Ecke, Annu. Rev. Fluid Mech. 44,
427 (2012).

[47] T. Simula, M. J. Davis, and K. Helmerson, Phys. Rev.
Lett. 113, 165302 (2014).

[48] L. Onsager, Nuovo. Cim. Suppl. 6, 279 (1949).
[49] R. H. Kraichnan and D. Montgomery, Rep. Prog. Phys.

43, 547 (1980).
[50] S. Sukoriansky, B. Galperin, and N. Dikovskaya, Phys.

Rev. Lett. 89, 124501 (2002).
[51] T. Kusumura, H. Takeuchi, and M. Tsubota, J. Low

Temp. Phys. 171, 563 (2013).
[52] L. Biferale, S. Musacchio, and F. Toschi, Phys. Rev.

Lett. 108, 164501 (2012).
[53] A. Doostmohammadi, T. N. Shendruk, K. Thijssen, and

J. M. Yeomans, Nat. Commun. 8 (2017).
[54] L. N. Fletcher, P. Irwin, G. S. Orton, N. A. Teanby, R. K.

Achterberg, G. L. Bjoraker, P. L. Read, A. A. Simon-
Miller, C. Howett, R. de Kok, et al., Science 319, 79
(2008).

[55] G. Schwarz, Hodge Decomposition - A method for solving
boundary value problems (Springer-Verlag, 1995).

[56] L. Scriven, Chem. Eng. Sci. 12, 98 (1960).
[57] E. Delay, Manuscripta Math. 123, 147 (2007).
[58] A. L. Besse, Einstein manifolds (Springer Science & Busi-

ness Media, 2007).
[59] V. I. Arnold and B. A. Khesin, Topological methods in

hydrodynamics, Vol. 125 (Springer Science & Business
Media, 1999).


	Anomalous chained turbulence in actively driven flows on spheres
	Abstract
	Acknowledgments
	References


