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We study a one-dimensional gas of hard rods trapped in a harmonic potential, which breaks
integrability of the hard-rod interaction in a non-uniform way. We explore the consequences of such
broken integrability for the dynamics of a large number of particles and find three distinct regimes:
initial, chaotic, and stationary. The initial regime is captured by an evolution equation for the phase-
space distribution function. For any finite number of particles, this hydrodynamics breaks down
and the dynamics become chaotic after a characteristic time scale determined by the inter-particle
distance and scattering length. The system fails to thermalize over the time-scale studied (104

natural units), but the time-averaged ensemble is a stationary state of the hydrodynamic evolution.
We close by discussing logical extensions of the results to similar systems of quantum particles.

Introduction. It has been known since the work of
Poincaré that even the simplest mechanical systems can
exhibit complex dynamics, with chaotic behavior as the
norm and integrability as a somewhat special case. This
distinction is only sharpened as the number of degrees of
freedom increases. The time-evolution of a generic inter-
acting many-body system is chaotic and ergodic: start-
ing from any initial condition, trajectories of the system
sample uniformly all configurations allowed by a few con-
servation laws, and are subject to the laws of statistical
mechanics. The integrable many-body systems are ex-
ceptions to this rule, and are able to escape ergodicity
and conventional thermalization thanks to the existence
of an extensive number of conserved quantities.

In practice, exact integrability is fine-tuned and vul-
nerable to real-world imperfections, so that systems with
broken integrability are more abundant than perfectly
integrable ones. Moreover, broken integrability provides
valuable insights into the general theory of dynamical
systems. For example, in classical mechanics, the KAM
theorem [1] states that for weak enough perturbations,
integrability is preserved in some finite portion of the
phase space. For a uniform perturbation of a many-body
system, the integrability-preserving phase-space often be-
comes vanishingly small, and no such “gray zone” is al-
lowed. Such a sharp distinction extends in general to
quantum many-body systems [2], although thermaliza-
tion can be parametrically slow with weak integrability
breaking [3–5].

In this work, we examine the consequences of the non-
uniform integrability breaking that results from placing
an integrable many-body system in a trap. A famous
experimental realization of this scenario is the “quantum
Newton’s cradle”, which consists of a trapped, quasi one-
dimensional Bose gas in a harmonic trap [6, 7]. In the
absence of the trap, the system is integrable and does not
thermalize; even with the trap, which destroys the higher
conservation laws needed for integrability, it is found that
the system fails to thermalize over experimentally acces-

sible time-scales. Here, the trap plays a delicate role: it is
needed to observe periodic motion, rather than a simple
expansion of the trapped gas, but also liable to destroy
it eventually due to its breaking integrability. This raises
two natural questions: what is the time scale t∗ induced
by integrability breaking, defined as the advent of chaos,
and does the system reach thermal equilibrium in the
long-time limit?

In the present work, we address these questions by
studying a classical analogue, the one-dimensional gas
of hard rods [8] in a harmonic trap, whose time evolution
can be obtained exactly from molecular dynamics simu-
lations. We propose the following simple scaling law for
t∗, in terms of the constant potential curvature V ′′(x),
particle mass m, the scattering length (rod length) a and
the maximal gas density ρm:

1/t∗ = Cρmaω , ω =
√
V ′′(x)/m, (1)

where C is an order-unity dimensionless pre-factor. Our
short answer to the second question is: the system is
chaotic but complete thermalization is not observed in
the long time scale accessible to us (tω ∼ 104). The
full answer is quite elaborate and related to the other
theme of this work: the validity of classical and quantum
hydrodynamical equations in systems whose integrability
is destroyed by a trap [9].

We find that both the initial time regime and the long-
time stationary ensemble are usefully captured by the
kinetic theory of hard rods [10–12], while there is an in-
tervening chaotic regime in which hydrodynamics fails.
An area of recent progress is that kinetic equations of
the same (dissipationless Boltzmann) type capture the
large-scale dynamics of quantum integrable systems [13–
22], with a self-consistent velocity functional drawn from
the Bethe equations. In the presence of a trap, the kinetic
equation admits an extension [15], which has not been
tested against microscopic dynamics. We perform this
test in the context of the classical hard-rod gas, as it is
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straightforward to write down a trapped hard-rod equa-
tion (tHRE) in the presence of an external potential. A
direct comparison against microscopic simulations shows
that the tHRE is accurate in an initial regime t < t∗,
before breaking down for any finite system-size, due to
a “complexity crisis” that will be explained. Despite the
onset of chaos, we find that the late-time non-thermal
ensembles are described by stationary solutions to the
tHRE [15].

Trapped hard-rod gas. The hard-rod gas in a har-
monic trap is equivalent to N one-dimensional harmonic
oscillators with hard-core repulsive interaction. The
Hamiltonian reads

H =

N∑

j=1

[
1

2
p2j + V (xj)

]
+
∑

j<k

U(xj − xk) (2a)

V (x) =
1

2
ω2x2 , U(δx) =

{
0 |δx| > a

∞ |δx| ≤ a , (2b)

where a > 0 denotes the rod length, and xj and pj denote
positions and momenta (we set m = 1). Upon re-scaling
time as t→ tω, we may set ω = 1 without loss of general-
ity. Starting from a configuration such that xj+1−xj ≥ a,
j = 1, . . . , N − 1, the gas evolves as N decoupled oscil-
lators, until the next collision (i.e., xj+1 − xj = a for
some j) in which the rods j and j + 1 exchange their
velocities spontaneously. Such a dynamics can be effi-
ciently and exactly simulated. There are two integrable
limits. Upon removing the trap, one recovers the usual
hard-rod gas. Its momentum distribution is conserved
and its dynamics map to those of N independent par-
ticles. Meanwhile, in the limit of vanishing rod length
a = 0, we obtain N decoupled harmonic oscillators. Yet,
in the presence of both trap and interaction, we find no
other conserved quantities besides the total energy and
the center-of-mass energy which we set to 0 [23].

To provide more convincing evidence of microscopic
non-integrability, we studied the three-body problem. Its
phase space, constrained by the conserved quantities, is
three-dimensional and one can visualize the orbits of the
Poincaré recurrence map, defined on a 2D sector of col-
liding configurations, as in Fig. 1. The fractal structure
observed is inconsistent with the existence of any higher
analytic integrals of motion. Yet, most trajectories do
not cover the available phase space, so are not micro-
canonical.

Hydrodynamics. The large-scale, coarse-grained dy-
namics of the hard-rod gas without the trap is described
by a Boltzmann-type equation, which governs the single-

particle phase space distribution ρ(x, p) = d2N
dxdp . Colli-

sions conserve particles’ momenta but modify their effec-
tive velocities. The resulting kinetic equation,

∂tρ+ ∂x(vρ) = 0, v[ρ](p) = p+
a
∫
p′

(p− p′)ρ(x, p′)

1− a
∫
p′
ρ(x, p′)

(3)
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Figure 1. (a) An illustration of three-rod dynamics. The
Poincaré sector is defined as the set of configurations just
after a 1-2 collision. They are indicated by dashed lines. The
Poincaré map sends the left one to the right one. (b) Orbits
of the Poincaré recurrence map, with H = 4 and vanishing
center-of-mass energy. The sector is bijectively parametrized
by p2− p1 and p3. Different colors distinguish distinct orbits.

was first obtained by Percus [10], and rigorously
proven [11] to define an Euler-scale hydrodynamics of
the hard-rod gas. Recently, equations similar to eq. (3)
were shown to capture a variety of large-scale dynamics in
quantum integrable systems [13–22], in which context we
call eq. (3) the Bethe-Boltzmann equation (BBE), since
the analogue of v[ρ](p) is obtained from thermodynamic
Bethe ansatz. A modification of BBE in an external po-
tential was proposed in [15], which coincides with the
standard Boltzmann correction for the Lieb-Liniger and
quantum hard-rod models [24]. For classical hard-rods,
the same correction can be obtained by different argu-
ments [25], and yields

∂tρ+ ∂x(vρ)− ∂xV ∂pρ = 0 . (4)

Since the trap breaks integrability of the microscopic dy-
namics, the validity of eq. (4) is so far a hypothesis to be
tested.

Nevertheless, the tHRE is conceptually helpful as a
guide to defining the thermodynamic (N → ∞) limit.
Indeed, eq. (4) has an emergent scale-invariance, (ρ, a) 7→
(λρ, a/λ) in any potential V , which relates pairs of sys-
tems with different N . Now, in a harmonic trap, we can
further apply a spatial rescaling (x, a) → (λx, λa), and
define profiles of different N corresponding to a fixed hy-
drodynamic profile ρ̃, with a fixed:

ρ(x, k) := ρ̃(x̃ = x/N, p̃ = p/N)/N . (5)

Therefore, we will set a = 1 in what follows.
We consider initial conditions (ICs) with Gaussian pro-

files: ρ̃(x̃, p̃) = exp
(
− x̃2

2σ2
x
− p̃2

2σ2
p

)
/(2πσpσx). We can

check that σ =
√
σ2
x + σ2

p and N fixes the total energy.

We also define a characteristic density:

ρm = 1/
√
πσ . (6)
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Figure 2. Comparing hard rod dynamics and tHRE in the
initial regime. (a) Comparing the density at origin (n(0))
The hard rod data (circles) is obtained by averaging over 200
realizations with N = 1024 rods, representing a circular IC
profile with σx = σp, ρma = 0.4 [eq. (6)]. The tHRE data
(curve) is obtained from its numerical integration [17, 18]. (b):
the density profile evolution obtained from the rod simulation.

ρm is proportional to the density of ρ(x, p) at origin, with
a pre-factor depending only on σ/σx, which describes
how “squeezed” the IC is.

The results will be discussed in three consecutive time
regimes: initial, chaotic and late-time.

Initial regime and tHRE breakdown. Using the proto-
cols defined above, we can compare the exact microscopic
dynamics against predictions from tHRE, which we ex-
pect to be valid at least at short times, when integrability
remains unbroken. To this end, we adapt the scheme de-
veloped in Refs. [17, 18] to solve numerically the tHRE;
the microscopic result is averaged over many ICs sam-
pling the same initial hydrodynamic profile. An example
comparison is illustrated in Fig. 2. A damped density
oscillation is observed in the short-time dynamics, and
is accurately captured by tHRE. Therefore, damping per
se is not a signature of integrability breaking. To under-
stand the nature of damping, we visualize the evolution of
ρ(x, p) in Fig. 3(a). Recall that the absence of interaction
(a = 0) would lead to a simple rotation of the IC. The
interaction induces a many-body dephasing responsible
for the damping. In the x-p phase space, the dephasing
generates a complex structure, reminiscent of a growing
galaxy. Such galaxy formation is also observed in the nu-
merical solution of the tHRE. Because the tHRE is dis-
sipationless, we believe that the tHRE solution has ever-
increasing complexity, which any finite-N system cannot
reproduce exactly: then, tHRE must break down, due to
a “complexity crisis”. Systems with larger N have higher
resolution and resist the complexity crisis better [26].

A quantification of the breakdown of tHRE is entropy
growth. Indeed, the dissipationless tHRE conserves the
entropy functional of the hard-rod gas,

S :=

∫

x,p

ρ ln θ, where θ(x, p) :=
ρ(x, p)

1− a
∫
p′
ρ(x, p′)

. (7)

Hence, measuring the time-evolution of S from micro-
scopic simulations tests the validity of tHRE without
solving it directly. The result, in Fig. 3-b, shows a clear
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Figure 3. (a) Evolution of phase-space distribution ρ(x, p) for
the squeezed IC (ρm = 1/2, σx = 1/2), with different N . At
t = 64, the N = 2048 system preserves a complex structure,
which is completely smeared out for N = 128. (b) Entropy
increase during time evolution, starting from different ICs.
The solid curves represent entropy growth estimated using
the entropy production term in [12].

entropy growth after t ∼ 10, invalidating tHRE at long
time. The growth is suppressed for larger N , as expected.
We also compared it to the estimate using the entropy
production term known for a non-trapped hard-rod gas
in local (generalized Gibbs) equilibrium [12, 27]. We
find a qualitative agreement, which deteriorates quantita-
tively as N increases. This suggests that the integrability
breaking leads to some local equilibration (required by
the entropy production term), which is suppressed when
N increases. We will support this scenario by studying
dynamical chaos.

Advent of chaos. We measure chaos defined as the
exponential separation of N -body phase space trajec-
tories [28]. We first consider circular ICs with varying
ρma, apply small perturbations and measure the average
deviation induced particle positions δxj(t) after evolu-
tion [29]. The result, shown Fig. 4-a, displays a clear
cross-over from non-chaotic plateau (|δxj(t)| ∼ |δx1(0)|)
to a chaotic regime, at a time 1/t∗ = Cρma, eq. (1),
where C ≈ 0.1. We show in the Supplementary Mate-
rial that the same time scaling law governs many-body
dephasing and complexity crisis. The data collapse in
the chaos regime implies the Lyapunov exponent scaling
γ ∝ aρm. The proportionality constants depend on other
aspects of the IC, but is in general positively correlated
with entropy growth. In particular, chaos is suppressed
as N increases. Indeed, our data are consistent with the
power law γ ∝ N−v , v ≈ 0.25 , see Fig. (4)-b. Such a
many-body suppression of chaos underlies that of local
equilibration discussed above, and is probably a general
feature of “weak” integrability breaking, i.e., not by in-
teractions, but by a trap. Although microscopic integra-
bility is broken, infinitely many conserved quantities (in-
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Figure 4. Dynamical chaos measured as separation of trajec-
tories. (a) Demonstrating the scaling law of time to chaos,
eq. (1). N = 64 for all data. Main plot: Scaling collapse,
initial regime and the crossover to chaos. (i) Raw data. (ii)
Scaling collapse of the exponential chaos regime. The initial-
regime oscillation has a period independent of ρma, and close
to that of a single harmonic oscillator. (b) Suppression of the
chaos in larger systems, as illustrated by the decrease of the
Lyapunov exponent. Main: raw data for ρma = 1/2; inset:
data collapse suggesting the scaling γ ∝ N−0.25.

cluding the entropy) of the HRE remain conserved for the
tHRE [30], and only affected by higher-derivative terms
to tHRE, which are finite-N corrections.

Late-time ensemble. The previous results all involve
averaging over some IC ensemble. From now on, we focus
on single, long trajectories, and average only over time.
In a generic thermalizing system, such a time-averaged
ensemble converges swiftly to the microcanonical ensem-
ble, even when the IC is highly atypical thermodynam-
ically (consider filling only a half of a box with gas).
Thermalization is usually associated with chaos, since
exponential separation of nearby trajectories means that
the initial condition is quickly forgotten. Therefore, one
would expect that the trapped hard-rod gas thermalizes
at late times t� t∗.

We test for thermalization by studying the late-time
velocity distribution, which is Gaussian in the canoni-
cal ensemble, and thus also in the microcanonical en-
semble for large N under equivalence of ensembles. In
Fig. 5, we perform a standard Gaussian test for the ve-
locity distribution of time-average ensembles obtained
from evolving some squeezed IC with ρma = 1/2 (the
most chaotic choice), up to tω = 2× 104 (in comparison,
pre-thermalization by integrability breaking is studied at
t ∼ 102 [4]). The result shows a clear deviation from
Gaussianity, which persists in the stationary regime and
moreover amplifies as N increases, barring finite-size ef-
fects. In comparison, a modified dynamics which shuf-
fles randomly the velocities every unit time thermalizes
far more quickly. Our result does not depend on the
IC chosen. Indeed, even for thermally typical ICs, the
time-averaged ensembles show visible (although smaller)
deviation from Gaussianity [31]. Furthermore, the de-
pendence on ICs is unpredictable, due to chaos.

Nevertheless, we propose a simple description of the
late-time ensembles, their phase-space distribution is a
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Figure 5. (a) (Non)-Gaussianity of the velocity distribution
of the time-averaged ensemble, as revealed by the moment-
ratio test. (b) Comparing the velocity distribution with the
reconstructed one from the density, assuming that the late
time ensemble solves the stationary tHRE eq. (8). The two
long-time ensembles are obtained from two squeezed (red) and
circular (black) ICs, both with ρma = 1/2.

stationary solution of the tHRE:

∂x(vρ)− ∂xV ∂pρ = 0 . (8)

The idea is quite simple and similar to discussions in [15]:
the late-time ensemble should be void of macroscopic mo-
mentum flow on average, which the tHRE calculates to
leading order (in a derivative expansion). Since late-time
ensemble distributions are usually quite smooth and gen-
tly varying, we expect eq. (8) to perform well.

To test this idea, we invoke the following fact (see
also [15]): ρ solves eq. (8) if and only if the corre-
sponding Fermi factor θ [see eq. (7)] depends only on
1
2p

2 +
∫ x
0

(
1− a

∫
p′
ρ(y, p′)

)
ydy . This makes it possible

to reconstruct the velocity distribution of any solution ρ
from its density. We can apply this to the time-averaged
density and compare with the true velocity distribution:
eq. (8) holds if the actual and reconstructed distributions
coincide. We performed this test on numerous late-time
ensembles, and show two examples in Fig. 5. The results
are excellent almost everywhere, except that a small dis-
crepancy is observed near sharp central peaks, possibly
due to diffusive corrections [12]. Overall, the station-
ary description is remarkably successful given its sim-
plicity, and suggests a tempting scenario of anomalous
thermalization: the resurrection of tHRE implies that its
conserved quantities become again microscopically con-
served after time-averaging (for the entropy, this can be
seen in Fig. 3), and prevents the late-time system from
thermalizing further.
Conclusion. We studied a classical paradigm of in-

tegrability breaking by a trap, which displays dynam-
ical features which are peculiar compared to generic
many-body interacting systems. Chaos is suppressed in
larger systems, and thorough thermalization takes a pro-
hibitively long time. The relation with kinetic theory via
tHRE is also non-trivial: the latter is valid at short time
and long time, and breaks down during the intermediate
regime.

It would be interesting to explore how far the above
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findings extend to quantum many-body systems, and it
seems reasonable to expect that the three-regime scenario
remains valid in regimes where the quantum-mechanical
wavelength λ is much smaller than 1/ρ and a (under-
stood as the scattering length). Otherwise, the eq. (1) is
possibly a lower bound: t∗ ≥ 1/(Caρmω). Indeed, in the
weakly interacting limit, a→∞ in 1D, but an infinitely
fast advent of chaos is unphysical. At the same time,
quantum coherence may make finite-N systems more re-
silient to the complexity crisis [28]. Nevertheless, since
the above arguments are general, we expect that the late-
time ensemble of a trapped δ Bose gas still satisfies the
corresponding kinetic equation, even in fully quantum
regimes.
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