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We determine both the quantum and the private capacities of low-noise quantum channels to lead-
ing orders in the channel’s distance to the perfect channel. It has been an open problem for more than
20 years to determine the capacities of some of these low-noise channels such as the depolarizing
channel. We also show that both capacities are equal to the single-letter coherent information of the
channel, again to leading orders. We thus find that, in the low noise regime, super-additivity and de-
generate codes have negligible benefit for the quantum capacity, and shielding does not improve the
private capacity beyond the quantum capacity, in stark contrast to the situation when noisier channels
are considered.

Any point-to-point communication link can be mod-
eled as a quantum channel N from a sender to a receiver.
Of fundamental interest are the capacities of N to trans-
mit data of various types such as quantum, private, or
classical data. Informally, the capacity of N to transmit a
certain type of data is the optimal rate at which that data
can be transmitted with high fidelity given an asymptot-
ically large number of uses of N . Capacities of a channel
quantify its value as a communication resource.

In the classical setting, the capacity of a classical
channel N to transmit classical data is given by Shan-
non’s noisy coding theorem [1]. While operationally, the
capacity-achieving error correcting codes may have in-
creasingly large block lengths, the capacity can be ex-
pressed as a single letter formula: it is the maximum mu-
tual information that a single channel use can generate be-
tween the input and output distributions.

The quantum capacity. In the quantum setting, to ev-
ery quantum channel N , one can associate an environ-
ment to which information is leaked when the channel
N is used. The (1-shot) coherent information Ic(N ) of
N is defined as the maximum of input-output mutual
information less the input-environment mutual infor-
mation. Intuitively, this quantifies a channel’s ability
to transmit quantum data to the receiver while mini-
mizing the information leaked to the environment, as
required by the well-known quantum principle that in-
formation gain in the environment implies disturbance
of transmitted data. (See supplementary material [2] for
details.) The Lloyd-Shor-Devetak (LSD) theorem [3–5]
for the capacity of N to transmit quantum data, denoted
Q(N ), makes this precise: they prove that the capacity

is given by the expression Q(N ) = limn→∞
1
n Ic(N⊗n).

Here, Ic(N⊗n) is the coherent information evaluated on
n copies of N , and is called the n-shot coherent information
of N . For special channels called degradable channels,
the coherent information is weakly additive, meaning that
Ic(N⊗n) = nIc(N ) [6], hence the capacity is the 1-shot
coherent information and can be evaluated in principle.

In general, the coherent information can be superaddi-
tive, Ic(N⊗n) > nIc(N ), and the potentially unbounded
optimization over n in the capacity expression is neces-
sary [7]. Twenty years after the LSD theorem was found,
there is still no known algorithm to compute the capac-
ity of a given channel. Furthermore, the n-shot coherent
information can be positive for some small n while the
1-shot coherent information is zero [7]. Moreover, given
any n, there is a channel whose n-shot coherent informa-
tion is zero but whose quantum capacity is positive [8].
Thus we do not have a general method to determine if a
given channel has positive quantum capacity.

Even for the qubit depolarizing channel, which is the
quantum analogue of the binary symmetric channel and

acts as Dp(ρ) = (1 − 4p
3 ) ρ + 4p

3
I
2 , our understanding

of the quantum capacity is limited. The perfect chan-
nel (p = 0) has unit capacity, while a no-cloning ar-
gument gives Q(Dp) = 0 for p ≥ 1/4 [9]. However,
Q(Dp) is unknown otherwise, despite substantial effort
(see e.g. [10–12]). For p ≈ 0.2, the 1-shot coherent infor-
mation vanishes, but positive communication rates are
achievable by using degenerate quantum error correcting
codes [7, 10, 11] to suppress the input-environment mu-
tual information. The threshold value of p where the
capacity goes to zero is unknown. For p close to zero,
the best lower bound for Q(Dp) is the one-shot coher-
ent information, while the best analytical upper bound
is at least O(p) higher [13, 14]. Recently, [15] found a
numerical upper bound on Q(Dp) which is very close
to the 1-shot coherent information for small p. Mean-
while, the complementary channel for the depolarizing
channel for any p > 0 is found to always have positive
capacity [12], which renders several other techniques to
understand the capacity inapplicable [16, 17].

Low-noise channels. In this paper, we consider the
quantum capacity of “low-noise quantum channels”
that are close to the identity channel, and investigate
how close the capacity is to the 1-shot coherent informa-
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tion. It has been unclear whether we should expect sub-
stantial nonadditivity of coherent information for such
channels. On the one hand, all known degenerate codes
that boost the quantum capacity above the 1-shot co-
herent information first encode one logical qubit into a
small number of physical qubits, which incurs a signif-
icant penalty in rate. This would seem to preclude any
benefit in the regime where the 1-shot coherent informa-
tion is already quite high. On the other hand, we have
no effective methods for evaluating the n-letter coherent
information for large n, and there may well exist new
types of coding strategies that incur no such penalty in
the large n regime.

We prove in this paper that to linear order in the noise
parameter, the quantum capacity of any low-noise chan-
nel is its 1-shot coherent information. Consequently, de-
generate codes cannot improve the rates of these chan-
nels up to the same order. For the special cases of the
qubit depolarizing channel, the mixed Pauli channel
and their qudit generalizations, we show that the quan-
tum capacity and the 1-shot coherent information agree
to even higher order.

Our findings extend to the private capacity P(N ) of
a quantum channel N (transmitting classical data of
which the environment has little information). Simi-
lar to the quantum capacity, the private capacity is an
optimized function called the private information opti-
mized on n uses of N divided by n [5], and the private
information is not additive ([18–20] and not well under-
stood, see [2] for details). Since quantum transmission is
necessarily private, the private capacity is never smaller
than the quantum capacity. Reference [21] exhibits chan-
nels with positive private capacity but zero quantum
capacity, and characterizes noise that hurts quantum
transmission and that can be “shielded” from corrupt-
ing private data. In [22], channels are found with al-
most no quantum capacity but maximum private capac-
ity. Meanwhile, for degradable channels N , the private
capacity is again equal to the 1-shot coherent informa-
tion, P(N ) = Ic(N ) [23]. We apply our techniques to
show that the private capacity of low-noise channels is
also equal to the 1-shot coherent information, and to the
quantum capacity to linear order in the noise parameter.
Consequently, shielding provides little benefit.

Our results follow closely the approach in [15]. Recall
that a quantum channel N : A → B can be described as
an isometry U from the input system A to an output B
and an environment E, followed by discarding the envi-
ronment, N (ρ) = trE(UρU†). A complementary channel
N c mapping the input to the environment is obtained
by discarding the output, N c(ρ) = trB(UρU†). A chan-
nel N is called degradable if there is another channel M
(called a degrading map) such that M◦N = N c. For a
general channel, [15] considers minimizing the diamond
norm distance ‖M ◦N −N c‖⋄ over all degrading maps
M. We call the resulting minimum distance dg(N ) the

degradability parameter of N . Continuity results, relative
to the case as if N is degradable, can then be obtained
similarly to [24]. This new bound in [15] limits the dif-
ference between the 1-shot coherent information and the
quantum capacity to O(η log η) where η is the degrad-
ability parameter, and a similar result holds for the pri-
vate capacity:

Theorem 1 ([15] Theorem 3.3). If N is a channel with
degradability parameter dg(N ) = η, then,

|Q(N )− Ic(N )| ≤ η

2
log(|E|−1) + η log |E|

+ h
(η

2

)

+
(

1 +
η

2

)

h

(

η

2 + η

)

|P(N )− Ic(N )| ≤ η log(|E|−1) + 4η log |E|

+ 2 h
(η

2

)

+ 4
(

1 +
η

2

)

h

(

η

2 + η

)

,

where h(x) :=− x log x − (1−x) log(1−x) is the binary en-
tropy function, and |E| is the Choi rank of N [2].

Note that η log η does not have a finite slope at η = 0
but it goes to zero faster than ηb for any b < 1. This new
bound is not explicit in general, due to the minimiza-
tion needed to evaluate η. However, the optimization
for η is a semidefinite program, giving good numerical
and some analytic access to the quantity, and thus to the
resulting capacity bounds.

The primary contribution in this paper is an analytic
proof of a surprising fact that, for low-noise channels
whose diamond norm distance to being noiseless is ε,
the degradability parameter η grows at most as fast as
O(ε1.5), rendering the gap O(η log η) between the 1-shot
coherent information and the quantum or private capac-
ity only sublinear in ε (see Theorem 2). For the qubit de-
polarizing channel and its various generalizations, we
improve the analytic bound of η to O(ε2) (see Theorem 4
in this paper and Theorem 19 in [2]). Furthermore, we
provide constructive approximate degrading maps and
explain why they work well.

In the following, we provide more detailed descrip-
tions and derivations of our results. The diamond norm
distance between two quantum channels N1,2 : A → B
can be expressed as ‖N1 − N2‖⋄ = maxρ ‖(id⊗(N1 −
N2))(ρ)‖1 where the maximization is over Hermitian
matrices with unit trace norm, ‖ρ‖1 = 1, and where
id is the identity channel on a reference system isomor-
phic to the input space of N1,2 (see [2] for details). For
a quantum channel N : A → B with complementary
channel N : A → E, the coherent information is de-
fined as Ic(N ) := maxρ{S(N (ρ))− S(N c(ρ))}, where
S(σ) = − tr σ log σ denotes the von Neumann entropy.

Main results. We first derive an upper bound for the
degradability parameter of a general low-noise quan-
tum channel N satisfying ‖N − id ‖⋄ ≤ ε (here, A = B).
We want a channel M such that M◦ N ≈ N c. Since
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N ≈ id, the complementary channel M = N c is a
rather good choice.

Theorem 2. Let ‖N − id ‖⋄ ≤ ε for ε ∈ [0, 2]. Then

‖N c −N c ◦ N ‖⋄ ≤ 2ε1.5.

Thus, dg(N ) ≤ 2ε1.5.

Proof. For the quantum channel N : A → A, let R be
a system isomorphic to A, and let ρ = ρRA be a state
such that ‖N c −N c ◦N ‖⋄ = ‖(id⊗N c)(ρ)− (id⊗N c ◦
N )(ρ)‖1. We set δ = ρ − (id⊗N )(ρ), which has a spec-
tral decomposition δ = ∑ λi|ψi〉〈ψi|. Since N is trace
preserving, id⊗ tr(δ) = 0. Also, ‖N − id ‖⋄ ≤ ε implies

∑i |λi| ≤ ε. We now use the above facts to compute

‖N c −N c ◦ N ‖⋄
= ‖ id⊗N c(δ)‖1

= ‖ id⊗N c(δ)− id⊗ tr(δ)‖1

= ‖∑ λi(id⊗N c − id⊗ tr)(|ψi〉〈ψi|)‖1

≤ ∑ |λi|‖(id⊗N c − id⊗ tr)(|ψi〉〈ψi|)‖1

≤ (∑ |λi|)‖N c − tr ‖⋄
≤ ε‖N c − tr ‖⋄.

Since tr = idc, we have ‖N c − idc ‖⋄ ≤ 2
√

ε by the con-
tinuity of the Stinespring representation (Corollary 9 in
[2]), and this concludes the proof.

Theorem 2 bounding the degradability parameter of
a low-noise channel, together with the approximate
degradability bounds in Theorem 1, immediately gives
us tight bounds on the channel’s quantum and private
capacities.

Theorem 3. Let ‖N − id ‖⋄ ≤ ε for ε ∈ [0, 1]. Then

|Q(N )− Ic(N )| ≤ f1(2ε3/2) = O(ε3/2 log ε)

|P(N )− Ic(N )| ≤ f2(2ε3/2) = O(ε3/2 log ε),

where f1(δ) = δ
2 log(|E| − 1) + h

(

δ
2

)

+ δ log |E| +
(

1 + δ
2

)

h
(

δ
2+δ
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and f2(δ) = δ log(|E| − 1) + 2h
(

δ
2

)

+

4δ log |E|+ 4
(

1 + δ
2

)

h
(

δ
2+δ

)

.

We now turn our attention to the depolarizing chan-
nel with error p ∈ [0, 1],

Dp(ρ) := (1 − p)ρ +
p

3
(XρX + YρY + ZρZ), (1)

where X, Y, Z are the usual Pauli matrices. Since ‖Dp −
id ‖ = 2p (see [2]), Theorem 2 tells us that Q(Dp) and
P(Dp) differ from Ic(Dp) = 1 − h(p) − p log 3 by no

more than O(p1.5 log p). In the following, we improve
the bound for this channel to O(p2 log p).

We would like to find Mp such that Dc
p ≈ Mp ◦ Dp.

Since Dp ≈ id, our zeroth-order guess is again Mp =
Dc

p. However, since Dp is slightly noisier than id, we
will do better by choosing Mp to be slightly less noisy
than Dc

p. In particular, we set Mp = Dc
s(p)

, the comple-

mentary channel to a depolarizing channel with s(p) =
p + ap2 for some a > 0 (note that s(p) = p + ap2 ≤ 1 in
the low-noise regime p & 0, and hence Dc

s(p)
is a valid

quantum channel). Since Ds(p) is noisier than Dp, the
complementary channel Dc

s(p)
is less noisy than Dc

p. Us-

ing this ansatz and tuning a appropriately leads to the
following theorem.

Theorem 4. Let Dp be a depolarizing channel with error
probability p. Then,

‖Dc
p −Dc

p+ 8
3 p2 ◦ Dp‖⋄ ≤

64

3
p2 +O(p5/2).

Thus, dg(Dp) ≤ 64
3 p2 +O(p5/2).

In fact, the leading constant in Theorem 4 can be im-

proved from 64
3 ≈ 21.3 to 8

9 (6 +
√

2) ≈ 6.6, which we
prove in Theorem 17 in the supplementary material [2].

Proof of Theorem 4. The complementary channel of Dp,
which we refer to as the epolarizing channel (cf. [12]), can
be chosen such that its action on a linear operator ρ is
given by Dc

p(ρ) =













(1 − p) tr(ρ) b(p)〈X, ρ〉 b(p)〈Y, ρ〉 b(p)〈Z, ρ〉
b(p)〈X, ρ〉 p

3 tr(ρ) − ip
3 〈Z, ρ〉 ip

3 〈Y, ρ〉
b(p)〈Y, ρ〉 ip

3 〈Z, ρ〉 p
3 tr(ρ) − ip

3 〈X, ρ〉
b(p)〈Z, ρ〉 − ip

3 〈Y, ρ〉 ip
3 〈X, ρ〉 p

3 tr(ρ)













,

(2)

where 〈P, Q〉 := tr(P†Q) is the Hilbert-Schmidt inner

product between operators, and b(p) :=
√

p(1−p)
3 . We

now show that there is a value of a such that ‖Dc
p −

Dc
p+ap2 ◦ Dp‖⋄ = O(p2). Using (1) and (2), we obtain

Dc
p+ap2 ◦ Dp(ρ) =













(1 − s) tr(ρ) b(s)p′〈X, ρ〉 b(s)p′〈Y, ρ〉 b(s)p′〈Z, ρ〉
b(s)p′〈X, ρ〉 s

3 tr(ρ) − is
3 p′〈Z, ρ〉 is

3 p′〈Y, ρ〉
b(s)p′〈Y, ρ〉 is

3 p′〈Z, ρ〉 s
3 tr(ρ) − is

3 p′〈X, ρ〉
b(s)p′〈Z, ρ〉 − is

3 p′〈Y, ρ〉 is
3 p′〈X, ρ〉 s

3 tr(ρ)













,

(3)

where p′ := 1 − 4p
3 and s = s(p) = p + ap2. We

set Φ = Dc
p − Dc

p+ap2 ◦ Dp, whose action on a linear

operator ρ is given by the difference between (2) and
(3). To upper bound ‖Φ‖⋄, we apply Lemma 6 of [2],
which states that ‖Φ‖⋄ ≤ 8‖J (Φ)‖max, where J (Φ) =
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∑
1
i,j=0 |i〉〈j| ⊗ Φ(|i〉〈j|) is the Choi matrix of Φ, and ‖ ·

‖max denotes the maximum absolute value over the en-
tries of a matrix. Due to the block structure of the Choi
matrix, ‖J (Φ)‖max = maxi,j ‖Φ(|i〉〈j|)‖max. To find
this maximum, first note that for any i, j, the quantity
|〈X, |i〉〈j|〉| is either 0 or 1, and similarly for |〈Y, |i〉〈j|〉|
and |〈Z, |i〉〈j|〉|. Therefore, from inspection of the dif-
ference between (2) and (3), maxi,j ‖Φ(|i〉〈j|)‖max is ei-

ther s − p = ap2, or 1
3 |sp′ − p| = 1

3 |a − 4
3 |p2 +

O(p3), or b(p) − p′b(s). The latter has a Taylor se-

ries expansion around p = 0 as ( 4
3
√

3
− a

2
√

3
)p3/2 +

O(p5/2), which is O(p5/2) if a = 8
3 . With this choice,

maxi,j ‖Φ(|i〉〈j|)‖max = ap2 = 8
3 p2 for sufficiently small

p. Altogether, ‖J (Φ)‖⋄ ≤ 8‖J (Φ)‖max ≤ 64
3 p2 +

O(p5/2), which completes the proof.

Theorem 4, together with Theorem 1, immediately
gives us new bounds on the quantum and private ca-
pacities of the qubit depolarizing channel.

Theorem 5.

0 ≤ Q(Dp)− (1 − h(p)− p log 3)

≤ −128

3
p2 log p +O(p2)

0 ≤ P(Dp)− (1 − h(p)− p log 3)

≤ −128 p2 log p +O(p2),

Furthermore, Theorem 17 in the supplementary ma-
terial [2] reduces the constants of the RHS by more than
a factor of 3. This is the first such bound known for the
low-noise depolarizing channel.

Extensions and implications. Our key new finding is
that channels within ε of perfect are also exceptionally
close to degradable, with degradability parameter of
O(ε1.5) in general and O(p2) for the qubit depolarizing
channel Dp. It remains open if the O(ε2) degradability
parameter holds in general, but our proof techniques
readily extend to some important classes of quantum
channels. In particular, we establish explicit quadratic
upper bounds for the degradability parameter for the
Pauli channels, which generalizes the depolarizing chan-
nel to arbitrary probabilities of having the four Pauli er-
rors (see Theorem 19 in [2] for details). Furthermore,
similar results hold for higher dimensional generaliza-
tions of the Pauli channels.

An important instance of the Pauli channels is the XZ-
channel (often called the BB84-channel in a quantum
key distribution context)

N XZ
p, q (ρ) := (1 − p)(1− q)ρ + p(1− q)XρX

+ pqYρY + (1 − p)qZρZ,

which implements independently an X-dephasing with
probability p, and a Z-dephasing with probability q. For

our discussion, we set p = q and denote the result-
ing XZ-channel by Cp := N XZ

p, p , which has coherent

information Ic(Cp) = 1 − 2h(p). Using similar meth-
ods as in the proof of Theorem 4, we show dg(Cp) ≤
64p2 + O(p3) in [2]. Moreover, similar to the depolariz-
ing channel the coefficient of p2 can be improved from
64 to 16, which we show in Theorem 21 in [2].

The nonadditivity of coherent information for a gen-
eral channel implies that degenerate codes are some-
times needed to achieve the quantum capacity [7, 8, 10,
11, 20, 25], but little is known about these codes despite
20 years of research. We showed that the coherent infor-
mation is essentially the quantum capacity for low-noise
channels. Therefore, we have also arrived at a refresh-
ing result that using random block codes on the typical
subspace of the optimal input (for the 1-shot coherent
information) essentially achieves the capacity.

Likewise, our findings have implications in quantum
cryptography. In quantum key distribution, quantum
states are transmitted through well-characterized noisy
quantum channels that are subject to further adversar-
ial attacks. Parameter estimation is used to determine
the effective channel (see for example [26]) and the op-
timal key rate of one-way quantum key distribution is
the private capacity of the effective channel. These ef-
fective channels typically have low noise (e.g., 1− 2% in
[27]), and our results imply near-optimality of the sim-
ple (classical) error correction and privacy amplification
procedures that approach the one-shot coherent infor-
mation of the effective channel. In particular, for the
XZ-channel with bit-flip probability p, the optimal key
rate is 1 − 2h(p) +O(p2 log p).

Finally, our results can be extended to generalized low-
noise channels N , for which there exists another channel
M such that ‖M ◦ N − I‖⋄ ≤ ǫ. For example, this in-
cludes all channels that are close to isometric channels.
For a generalized low-noise channel, we have by Theo-
rem 2 that

‖(M◦N )c − (M◦N )c ◦ (M◦N )‖⋄ ≤ 2ǫ3/2. (4)

Furthermore, up to an isometry,

(M◦N )c(ρ) = (Mc ⊗ IE1
)(UN ρU†

N ),

where UN : A → BE1 is an isometric extension of N
and Mc : B → E2, so that trE2

(M◦N )c(ρ) = N c(ρ).
Equation (4) therefore implies

‖N c − trE2
(M◦N )c ◦ (M◦N )‖⋄ ≤ 2ǫ3/2,

so that letting D = trE2
(M◦N )c ◦M we have ‖N c −

D ◦ N‖⋄ ≤ 2ǫ3/2 and N is approximately degradable
with degradability parameter 2ǫ3/2. We thus find that
the same bounds as in Theorem 3 apply in the case of a
generalized low-noise channel N .
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