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We prove that universal quantum computation can be realized—using only linear optics and χ(2) (three-wave
mixing) interactions—in any (n+ 1)-dimensional qudit basis of the n-pump-photon subspace. First, we exhibit
a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we demonstrate qutrit-
basis universality by proving that χ(2) Hamiltonians and photon-number operators generate the full u(3) Lie
algebra in the two-pump-photon subspace, and showing how the qutrit controlled-Z gate can be implemented
with only linear optics and χ(2) interactions. We then use proof by induction to obtain our general qudit result.
Our induction proof relies on coherent photon injection/subtraction, a technique enabled by χ(2) interaction
between the encoding modes and ancillary modes. Finally, we show that coherent photon injection is more than
a conceptual tool in that it offers a route to preparing high-photon-number Fock states from single-photon Fock
states.

Introduction.— Photons are promising information carri-
ers for quantum computers owing to photons’ long room-
temperature coherence time, high transmission speed, and
high-fidelity preparation schemes [1–4], plus the availability
of efficient photodetectors [5, 6], and the scalable on-chip
integration of linear and nonlinear optical components [7–
10]. Architectures for optics-based quantum computation
have gone through dramatic developments over the past two
decades [11–16], but significant obstacles remain to be over-
come.

Optics-based quantum computation depends on photon-
photon interactions for the realization of a universal gate set.
The lowest order photon-photon interactions are described by
unitary transformations of the form Û = exp(−iL̂) that are
generated by general two-wave mixing Hamiltonians,

L̂ ∈ {(gâb̂+ g∗â†b̂†), (gâb̂† + g∗â†b̂)}, (1)

where g is a c-number and â† and b̂† are photon-creation op-
erators from different optical modes, so that [â, b̂†] = 0, or
the same optical mode, for which [â, b̂†] = 1. Unitary trans-
formations of this form can realize universal single-qubit ro-
tations in the Fock-state basis but are not universal for quan-
tum computation without some additional resource. To im-
plement universal optics-based quantum computation, four-
wave mixing (a χ(3) interaction) was previously considered
to be the lowest-order optical nonlinearity that will suffice in
this regard [13, 17, 18]. The inherent weakness of χ(3) in-
teractions, however, has precluded their delivering the high-
fidelity gates required to make optics-based quantum compu-
tation practical [19–21]. Linear-optical quantum computation
(LOQC) [14, 22–24] circumvents the need for photon-photon
interactions through postselection, but this approach comes
with the need for a prohibitive number of perfect single-
photon ancillae to cope with LOQC’s probabilistic nature and
the ubiquitous photon loss [15, 25–27].

One way to circumvent the weakness of photon-photon in-
teractions is to employ the lowest-order nonlinearity that can

provide universal quantum computation, viz., the χ(2) inter-
action whose three-wave-mixing Hamiltonians can be decom-
posed into linear combinations of the following terms [28]

Ĝ1 =
iκ

2

[
â†sâ
†
i âp − âsâiâ

†
p

]
, Ĝ2 =

κ

2

[
â†sâ
†
i âp + âsâiâ

†
p

]
.

(2)

Here, {â†k : k = s, i, p} are the photon-creation operators of
the interaction’s signal, idler, and pump modes, and the real-
valued κ quantifies the interaction’s strength.

The efficiencies of χ(2) interactions have been steadily im-
proving over the past decade [29–42]. Moreover, owing to the
importance of χ(2) interactions in quantum state transduction
for superconducting and ion-trap qubits, the platforms of in-
terest for χ(2) interactions have expanded beyond traditional
nonlinear crystals [36–41], bringing full utilization of their
quantum dynamics closer to reality.

Coherent photon conversion, i.e., χ(2) interactions defined
in (2) in which the signal, idler, and pump modes are all
quantum mechanical, was first proposed by Koshino [43],
and later used by Langford et al. [42] to show how univer-
sal quantum computation can be realized with that resource in
the single-photon qubit basis. We refer to such interactions
as full-quantum χ(2) interactions, to distinguish them from
pumped χ(2) interactions, in which a nondepleting coherent-
state pump reduces (2) to the two-wave interactions shown in
(1). Langford et al.’s groundbreaking work, however, is not
without drawback. Available schemes for correcting photon
loss [11, 44–46], viz., the dominant error in photonic quan-
tum computation, require either measurement-based or χ(3)

gates on the encoded basis. Thus Ref. [42] does not provide a
χ(2) approach that facilitates photonic quantum computation
that is robust to photon loss.

In this Letter, and its companion paper [47], we show
how the work of Langford et al. can be extended to a
more natural computational basis for χ(2)-based quantum
computation in which photon-loss errors can be addressed.
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More generally, we prove that χ(2) interactions plus linear
optics can provide a strictly universal gate set for quantum
computation in any (n + 1)-dimensional qudit basis of the
n-pump-photon subspace. Because any d-qudit unitary gate
can be described by a Lie group element of SU((n + 1)d),
the universality of a given class of Hamiltonians is directly
related to that class’s Lie algebra and the Lie group it gener-
ates via the exponential map [48]. Thus we use Lie-algebra
analysis to identify code subspaces that are closed under χ(2)

Hamiltonian evolutions [50, 51]. Our Lie-algebra analysis
underlies the symmetry-operator formulation of qudit-basis
error-correcting codes for photon-loss errors and the universal
gate-set constructions in the encoded basis that we report
in [47]. Hence our proposal provides a χ(2) approach to
photonic quantum computation that is robust to photon loss.
We begin the development of our universality results with a
summary of the linear optics and the χ(2) resources we shall
employ. We follow with qubit and qutrit universality proofs,
as preludes to our induction proof for the general qudit case.

Linear Optics and χ(2) Resources.— The linear optics
resources we require are readily available: dichroic mir-
rors and phase shifters. The pumped χ(2) resource we re-
quire is quantum-state frequency conversion (QFC) [52–54],
which converts a frequency-ωin single-photon Fock state to a
frequency-ωout single-photon Fock state. The full-quantum
χ(2) resources we require are: second-harmonic generation
(SHG), which converts a frequency-ωin two-photon Fock state
to a frequency-2ωin single-photon Fock state; type-I phase-
matched spontaneous parametric downconversion (SPDC),
which converts a frequency-2ωin single-photon Fock state to
a frequency-ωin two-photon Fock state; and generalized sum-
frequency generation (SFGθ), which accomplishes the state
transformation [55]

SFGθ|1, 1, 0〉 = cos(θ)|1, 1, 0〉+ sin(θ)|0, 0, 1〉, (3)

where |ns, ni, np〉 denotes a three-mode Fock state containing
ns frequency-ωs photons, ni frequency-ωi idler photons, and
np frequency-ωp pump photons, with the pump’s frequency
satisfying ωp = ωs + ωi.

Universality in the Qubit Basis.— The Lie group generated
by χ(2) Hamiltonian evolutions is a subgroup of the unitary
group U , hence it is compact. A compact Lie group, together
with its generating Lie algebra, are completely reducible.
This means that they can be written as a direct sum of irre-
ducible representations over the state space H ≡ ⊕∞n=1Hn,
whose irreducible subspaces, {Hn}, are labeled by their pump
mode’s maximum photon number n, i.e., they are the n-pump-
photon subspaces spanned by the three-mode Fock-state bases
{|0, 0, n〉, |1, 1, n− 1〉, . . . , |n, n, 0〉}. For qubit universality,
we therefore encode in the one-pump-photon subspace H1,
using the three-mode Fock states,

|0̃〉 = |1, 1, 0〉, |1̃〉 = |0, 0, 1〉, (4)

for our logical-qubit basis states. Here, the signal and idler are
both at frequency ω with orthogonal polarizations, the pump
is at frequency 2ω, and all three share a common spatial mode.
Universality is proved by the following theorem.

Theorem 1. Universal quantum computation can be realized
with χ(2) interactions and linear optics in any qubit basis of
the one-pump photon subspace.

Proof : The χ(2) Hamiltonians, Ĝ1 and Ĝ2, defined in (2)
are proportional to the Pauli Ŷ and Pauli X̂ operators in the
logical-qubit basis, which are universal for realizing single-
qubit rotations. So, to complete our χ(2) universality proof for
the logical-qubit basis in (4), it suffices for us to show that we
can construct a controlled-Z qubit gate for that basis [12], i.e.,
a gate (denoted Λ2[Z] in what follows) that imparts a π-rad
phase shift to the |1̃〉c|1̃〉t component of the joint state of the
control (subscript c) and target (subscript t) qubits. Moreover,
because Λ2[Z] can be sandwiched between single-qubit χ(2)

rotations to achieve the controlled-Z function in anyH1 qubit
basis, Theorem 1 will be proved once we have established how
to realize Λ2[Z].

Figure 1 shows our optical circuit [56] for the Λ2[Z] gate
for the logical-qubit basis in (4). The control and target qubits
enter on the upper and lower rails, respectively. QFC1 shifts
the frequency of control qubit’s pump photon (if present) from
2ω to 2ω′, so that dichroic mirrors (DMs) are able to direct
pump photons from the control and target qubits to the cen-
ter rail’s SFGπ gate, where they serve as modes 1 (frequency
ω1 ≡ 2ω′) and 2 (frequency ω2 = 2ω). This gate imparts
a π-rad phase shift if and only if pump photons are present
from both the control and target qubits. Thus, after another
set of DMs restore the control and target pump photons to the
top and bottom rails, respectively, the Λ2[Z] gate—and hence
the proof of Theorem 1—is completed by QFC2, which shifts
the frequency of the control qubit’s pump photon (if present)
from 2ω′ to 2ω. Note that each χ(2) element Fig. 1 acts on
only one of its potentially excited bosonic-mode inputs, e.g.,
QFC1 affects its pump-mode input but neither its signal-mode
input nor its idler-mode input. Such modal selectivity puts
a burden on experimental realization. In particular, QFC1
and QFC2 will require a different nonlinear medium than will
SFGπ . This difficulty, however, may disappear once high-
efficiency nondepleted χ(3) induced χ(2) interactions become
available [33, 34, 42].

target	

DM DM

DM DM

DM DMSFGπ

QFC1 QFC2control	

FIG. 1. Schematic for constructing the Λ2[Z] gate in the logical-
qubit basis (4) using χ(2) interactions and linear optics. QFC1 and
QFC2: quantum-state frequency conversions. DM: dichroic mirror.
SFGπ: generalized sum-frequency generation (3) with θ = π.



3

Universality in the Qutrit Basis.— For qutrit universality,
we encode inH2 using the three-mode Fock states

|0̃〉 = |1, 1, 1〉, |1̃〉 = |2, 2, 0〉, |2̃〉 = |0, 0, 2〉, (5)

for our logical-qutrit basis states. Here, the signal and idler
have frequency ω and are orthogonally polarized, while the
pump has frequency 2ω, and all three share a common spa-
tial mode. These states can be prepared by type-II phase-
matched SPDC in the two-pump-photon subspace [35], and
are naturally confined to this subspace under χ(2) interac-
tions. It follows that restricting linear combinations of the
χ(2) Hamiltonians, Ĝ1, Ĝ2, the modal photon-number opera-
tors, {N̂k ≡ â†kâk : k = s, i, p}, and the nested commutators
of these operators to the two-pump-photon subspace H2 con-
stitutes a Lie algebra g. The Lie group H associated with
g is found from the exponential map exp : g → H , where
for each group element ĥ ∈ H , ∃Ê ∈ g and t ∈ R such
that ĥ = exp(itÊ). For simplicity, in all that follows, we set
κ = 1 in the Hamiltonians Ĝ1 and Ĝ2. We begin our univer-
sality demonstration with a theorem about g.

Theorem 2. The Lie algebra g is u(3).
Proof : First we prove that u(3) ⊆ g. From the origi-

nal χ(2) Hamiltonians Ĝ1 and Ĝ2, we can obtain all trans-
formations generated by linear combinations of Ĝ1, Ĝ2, N̂s,
N̂i, N̂p and their nested commutators. Using the vector
vT ≡ [ v0 v1 v2 ] to represent the qutrit |ψ〉 = v0|1, 1, 1〉+
v1|2, 2, 0〉+ v2|0, 0, 2〉, we obtain the matrix representations

Ĝ1 =
i

2

[
â†sâ
†
i âp − âsâiâ

†
p

]
=
−i
2

 0 2
√

2
−2 0 0

−
√

2 0 0

 , (6)

Ĝ2 =
1

2

[
â†sâ
†
i âp + âsâiâ

†
p

]
=

1

2

 0 2
√

2
2 0 0√
2 0 0

 , (7)

Ĝ3 = i[Ĝ1, Ĝ2] =

1 0 0
0 −2 0
0 0 1

 , (8)

Ĝ4 = i[Ĝ2, Ĝ3] = 3

0 1 0
1 0 0
0 0 0

 , (9)

Ĝ5 = i[Ĝ3, Ĝ1] = 3i

 0 1 0
−1 0 0
0 0 0

 , (10)

Ĝ6 =
1

2

(
i[Ĝ1, Ĝ4] + i[Ĝ5, Ĝ2]

)
=

3

4

0 0 0
0 0 1
0 1 0

 , (11)

Ĝ7 = i[Ĝ4, Ĝ2] =
3i

4

0 0 0
0 0 −1
0 1 0

 , (12)

Ĝ8 =
1

2
(1− N̂p) =

1

2

0 0 0
0 1 0
0 0 −1

 , (13)

Ĝ9 =
1

2

(
N̂s + N̂i

2
+ N̂p

)
=

1 0 0
0 1 0
0 0 1

 , (14)

for all the independent generators, where the second equali-
ties apply in the two-pump-photon subspace H2. It is then
straightforward to verify that the Gell-Mann matrices arising
from linear combinations of the above generators are:

λ̂1 = Ĝ4/3, λ̂2 = −Ĝ5/3, (15)

λ̂3 = 2Ĝ8 + Ĝ3, λ̂4 =
√

2(Ĝ2 − Ĝ4/3), (16)

λ̂5 =
√

2(Ĝ1 − Ĝ5/3), λ̂6 = 4Ĝ6/3, (17)

λ̂7 = 4Ĝ7/3, λ̂8 = (Ĝ3 + 6Ĝ8)/
√

3. (18)

Gell-Mann matrices are one representation of the complete set
of linearly independent generators for the su(3) Lie algebra.
Together with Ĝ9 they form the complete set of generators for
u(3), proving that u(3) ⊆ g.

We complete our proof of Theorem 2 by showing that g ⊆
u(3). Because the two-pump-photon subspace H2 is closed
under g, every Lie group element ĥ ∈ H is generated by an
Ê ∈ g via ĥ = exp(itÊ) for some t ∈ R. As exp(itÊ) is a
unitary transformation in the two-pump-photon subspace, we
haveH ⊂ U(3). Furthermore, this condition holds if and only
if g ⊆ u(3), thus finishing Theorem 2’s proof.

Refs. [57–59] show that if operators {Ĝk} and their nested
commutators generate the Lie algebra u(3m), then they can
be used to construct a universal set of unitaries Uk(t) =
exp(−itĜk) in the m-qutrit subspace. Setting m = 1 we
have the following claim.

Claim 1. Universal single-qutrit rotations can be realized
with χ(2) interactions.

Universal qutrit computation entails not only universal
single-qutrit unitary gates but also universal two-qutrit unitary
transformations inH⊗22 , so we need the following theorem.

Theorem 3. Universal qutrit quantum computation can be
realized with χ(2) interactions and linear optics in any qutrit
basis of the two-pump-photon subspace.

Proof : From Claim 1 we know that arbitrary U(3) qutrit
rotations can be realized with χ(2) interactions. It is also
known [12, 60–62] that a universal single-qutrit gate set plus a
controlled-Z gate for the logical-qutrit basis in (5)—denoted
Λ3[Z]—are universal for qutrit computation in any qutrit basis
of the two-pump-photon subspaceH2.

The Λ3[Z] gate realizes the unitary transformation
Λ3[Z]|j̃〉c|k̃〉t = (−1)δj̃2̃δk̃2̃ |j̃〉c|k̃〉t for states in H2, where
δuv is the Kronecker delta. Figure 2 shows how this gate
can be realized using χ(2) interactions and linear optics. The
control and target qubits enter on the upper and lower rails,
respectively, where second-harmonic generators (SHGs) con-
vert two-photon Fock-state pumps at frequency 2ω to a single-
photon Fock state at frequency 4ω. The shaded block labeled
Λ2[Z] is the same gate shown in Fig. 1 except that: (1) its
QFC1 converts a frequency-4ω single-photon Fock state to a
frequency 4ω′ single-photon Fock state; (2) its first set of DMs
route the frequency-4ω′ photon (if present) from the upper rail
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SHG SPDC

SPDC

DM DM

DM DM

QFC1

DM DMSFGπ

SHG

QFC2

⇤2[Z]

control	

target	

FIG. 2. Schematic for constructing the Λ3[Z] gate in the logical-
qutrit basis (5) using χ(2) interactions and linear optics. SHG:
second-harmonic generation; Λ2[Z]: the optical circuit from Fig. (1)
with modifications described in the text. SPDC: type-I phase-
matched spontaneous parametric downconversion.

and the frequency-4ω photon (if present) from the lower rail
to the SFGπ block on the center rail; (3) its SFGπ block is ar-
ranged to apply a π-rad phase shift to the state |1, 1, 0〉, whose
first two entries are the photon numbers of its frequency-
4ω′ and frequency-4ω inputs; (4) its second set of DMs re-
turn the frequency-4ω′ and frequency-4ω photons to the up-
per and lower rails, respectively; and (5) its QFC2 converts
a frequency-4ω′ single-photon Fock state to a frequency-4ω
single-photon Fock state. The SPDC blocks then complete the
Λ3[Z] gate—by converting frequency-4ω single-photon Fock
states (if present) to frequency-2ω two-photon Fock states—
because the Λ2[Z] block has imparted a π-rad phase shift to
the |2̃〉c|2̃〉t component of the original input state. Together
with Claim 1, the Λ3[Z] construction proves Theorem 3.

Universality in the (n+1)-Dimensional Qudit Basis.— The
culmination of our χ(2) universality work is the following the-
orem.

Theorem 4. Universal qudit quantum computation can be
realized with χ(2) interactions and linear optics in any (n+1)-
dimensional basis of the n-pump-photon subspace.

Proof : Our proof is by induction. We have already shown
that Theorem 4 holds for n = 1 and n = 2. The induction
proof is completed by assuming that Theorem 4 holds for
n = m, and then showing that it holds for n = m + 1.
The details appear in [55]. Here we just note that they
involve a Lie-group result [51, 63] and coherent photon
injection/subtraction. Coherent photon injection/subtraction
are full-quantum χ(2) interactions between the encoded
modes and ancillary modes. Although used as a conceptual
tool in the proof of Theorem 4, coherent photon injection
has independent merit owing to its enabling prepara-
tion of high-photon-number Fock states from single-photon
Fock states. Thus we devote the next section to its description.

Coherent Photon Injection.— The coherent photon injec-
tion used in our universality proof is a generalization of a
result from Hubel et al. [64]. To illustrate how it works,
suppose we start with the qubit-basis state |1̃〉 = |0, 0, 1〉
from (4) with the goal of generating the qutrit-basis state
|2̃〉 = |0, 0, 2〉 from (5). Coherent photon injection accom-

plishes this task as follows. We adjoin the |0, 0, 1〉 system
with an ancillary pump mode (photon creation operator â†p′ )
that has the same frequency as, but is orthogonally polarized
to, the pump mode of |0, 0, 1〉. We then turn on the χ(2) in-
teraction Ĝ2a =

[
â†sâ
†
i âp′ + âsâiâ

†
p′

]
between the original

signal-idler modes and the ancillary pump mode to realize the
transformation eiπĜ2a/2|0, 0, 1〉|1〉a = |1, 1, 1〉|0〉a. This co-
herent photon injection has transformed the qubit-basis state
|1̃〉 = |0, 0, 1〉 in the one-pump-photon subspace to the qutrit-
basis state |1̃〉 = |1, 1, 1〉 in the two-pump-photon subspace.
A qutrit-basis χ(2) gate can now rotate |1̃〉 to |2̃〉 in the two-
pump-photon subspace [55]. Insofar as the pump mode is con-
cerned, this overall procedure has converted a single-photon
Fock-state input to a two-photon Fock-state output. The in-
jection process can now be repeated to transform |0, 0, 2〉
to |1, 1, 2〉, after which a χ(2)-enabled rotation in the three-
pump-photon subspace will yield |0, 0, 3〉. In this manner,
high-photon-number Fock states can be prepared using only
single-photon sources and full-quantum χ(2) interactions.

Conclusions.— We have shown that universal optics-based
quantum computation using only linear optics and χ(2) inter-
actions is possible in any (n + 1)-dimensional qudit basis of
the n-pump-photon subspace, with the natural basis being the
three-mode Fock states {|0, 0, n〉, |1, 1, n− 1〉, . . . , |0, 0, n〉}
of frequency-ω, orthogonally-polarized signal and idler
modes, and a frequency-2ω pump mode, all of which share
a common spatial mode. Our work extends the usual gate-
model universality to the universality of χ(2) Hamiltonian
interactions in their irreducible subspaces. Such extension
facilitates error correction for photon loss by providing a
symmetry-operator formalism for hardware-efficient quantum
error correction [47]. Moreover, Lie algebraic understanding
of χ(2) interactions opens a path for defining an Abelian group
that would enable fault-tolerant quantum computation that is
robust to photon loss and physical rotation errors. To reach
the end of that path, however, will require technology devel-
opment.

The resources required for our qudit-basis χ(2) quantum
computation are: single photon sources, and linear optics, plus
χ(2) interactions. High-quality linear optics (dichroic mirrors
and phase shifters) are already available, and high-efficiency
quantum-state frequency conversion (the pumped χ(2) inter-
action we need) have been demonstrated. But, because cur-
rently available or demonstrated single-photon sources and
full-quantum χ(2) (SHG, SFGπ , and SPDC) interactions fall
short of what our architectures require, continued advances
in these technologies must occur before our quantum compu-
tation proposals become practical. There is some reason for
optimism in this regard, e.g., the efficiency of the χ(2) non-
linearity has been improved from 10−7 [42] to 10−1 [65] in
less than a decade. Furthermore, state-of-the-art experimen-
tal realizations of strong χ(2) interactions—including in solid-
state circuits [36], flux-driven Josephson parametric ampli-
fiers [37, 38, 41], superconducting resonator arrays [39, 40],
nondepleted four-wave-mixing-induced three-wave mixing in



5

photonic microstructured fibers [33, 34, 42], χ(2) interac-
tions inside ring resonators [66], and nonlinear interactions in
frequency-degenerate double-lambda systems [67]—are clos-
ing the gap between theory and practical applications of full-
quantum χ(2) interactions.
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