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Motivated by recent experiments, we study a quasi-one dimensional model of a Kondo lattice with Ferro-
magnetic coupling between the spins. Using bosonization and dynamical large-N techniques we establish the
presence of a Fermi liquid and a magnetic phase separated by a local quantum critical point, governed by the
Kondo breakdown picture. Thermodynamic properties are studied and a gapless charged mode at the quantum
critical point is highlighted.

Heavy fermion materials are a class of quantum system in
which the close competition between magnetism and intiner-
acy drives a wealth of novel quantum ground states, including
hidden order, strange and quantum critical metals, topolog-
ical insulators and unconventional superconductivity [1, 2].
The various entanglement mechanisms by which the localized
magnetic moments correlate and transform heavy fermion ma-
terials provide an invaluable window on the governing princi-
ples needed to control and manipulate quantum matter.

An aspect of particular interest is the quantum critical-
ity that develops when a second-order magnetic phase tran-
sition is tuned to absolute zero. In itinerant magnets, quantum
phase transitions (QPTs) are understood in terms of the clas-
sic Slater-Stoner instabilities of Fermi liquids (FLs), described
by the interaction of soft magnons with a Fermi surface, de-
scribed in its simplest form by Hertz-Millis-Moriya (HMM)
theory [3–5]. More recent treatments have examined the role
of non-local interactions, mediated by the Fermi sea [6–8]; in
itinerant ferromagnets these interactions give rise to first order
QPTs, a a feature in good accord with experiment. The nature
of the quantum criticality in metals in which the magnetism
has a localized moment character is less well understood, but
is thought to involve a partial or complete Mott localization
of the electrons, manifested in heavy fermion compounds as a
break-down of the Kondo effect and a possible collapse in the
Fermi surface volume [9–15].

Most research into heavy fermion quantum criticality has
focused on antiferromagnetic instabilities, often discussed as
a competition between the Kondo screening of local mo-
ments, and antiferromagnetism, driven by the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [16–18]. However,
there is now a growing family of heavy-fermion systems, in-
cluding α and β-YbAlB4 [19–21], YbNi4P2 [22], YbNi3Al9
[23] and CeRu2Al2B [24]. Unlike itinerant ferromagnets
these systems display second-order quantum criticality, sug-
gesting an important interplay of the Kondo effect with criti-
cality [6, 18, 25].

These discoveries motivate us to examine quantum criti-
cality in a Kondo lattice with ferromagnetic (FM) interactions.
This affords many simplifications, for a uniform magnetiza-
tion M commutes with the Hamiltonian [M,H] = 0 and is
thus a conserved quantity, free from zero-point motion. Anti-
ferromagnetic Kondo lattices are normally discussed in terms

FIG. 1. (a) The quasi-1D structure of Yb local moments (red) in
YbAlB4 sandwiched between conducting B layers. (b) 1D model,
showing ferromagnetically coupled local moments (−JH < 0), each
screened by a separate conduction electron sea (grey layers). (c)
Phase diagram we find for the model as a function of TK/JH and
temperature, showing a Fermi liquid and a 1D ferromagnetic regime,
separated by a QCP, giving rise to a fan of strange metal (SM) behav-
ior at high temperature. The Fermi temperature TF vanishes at the
QCP. The 1D FM only orders at zero temperature and is intrinsically
quantum critical. (d) RG flow of transverse Ising model to which our
model maps in the Ising limit.

of a “global” phase diagram [10, 14] with two axes - the Do-
niach parameter x = TK/JH , set by the ratio of the Kondo
temperature TK to the Heisenberg coupling JH , and the frus-
tration parameter y measuring the strength of magnetic zero
point fluctuations. The elimination of magnetic zero point
fluctuations allows us to focus purely on the x-axis of the gen-
eralized phase diagram. becomes possible to study magnetic
quantum criticality in a one dimensional model.

Our model is motivated by the quasi-one dimensional Yb
structure of YbAlB4, in which a chain of ferromagnetically
coupled Yb spins hybridizes with multiple conducting planes
of B atoms (Fig. 1.) [26]. For simplicity, we treat each plane
as an autonomous electron bath with a flat density of states,
individually coupled via an antiferromagnetic Kondo coupling
JK , according to

H =
∑
j

(
Hc(j) + JK ~Sj · ~σj − JH ~Sj · ~Sj+1

)
, (1)

where ~Sj is the spin at the j-th site, coupled ferromag-
netically to its neigbor with strength JH . Hc(j) =



2∑
p εpc

†
pα(j)cpα(j) describes the j − th layer of electrons,

coupled to the chain via its spin density ~σj = ψ†jα~σαβψjβ at
the chain, where p is the momentum of the conduction elec-
trons at the j-th layer and ψ†jα =

∑
p c
†
pα(j) creates an elec-

tron at the position of the magnetic moment j on the chain.
At small x = TK/JH the 1D chain is ferromagnetically

correlated, developing true long range order and breaking
time-reversal symmetry at zero temperature, while at large x it
forms a paramagnet where each spin is individually screened:
in between, there is a sharp transition which we identify as
a quantum critical point (QCP) [16, 25]. This QCP has been
demonstrated [27, 28] in the Ising limit of this Kondo lattice at
the Toulouse decoupling point [29], which permits bosoniza-
tion of the Hamiltonian, mapping it [30] onto the transverse
field Ising model, H → TK

∑
n S

x
n + JzH

∑
n S

z
nS

z
n+1. This

model has a well-known RG flow [Fig.1(d)] and a quantum
phase transition at JzH = TK [31]. However, in this limit, the
stable phases are gapped and to gain a deeper insight into the
physics of the QCP, we return to the Heisenberg limit.

Here instead, we use a large-N Schwinger boson approach
which treats the magnetism in the Heisenberg limit, while also
explicitly preserving the Kondo effect. Our method unifies the
Arovas and Auerbach treatment of ferromagnetism [32] with
the description of the Kondo problem by Parcollet, Georges et
al [33–36]. An important aspects of this approach, is the use
of a multi-channel Kondo lattice in which the spin S and the
number of channels K is commensurate (K = 2S), allowing
for a perflectly screened Kondo effect [36].

Figure 1(c) summarizes the key results. At large TK/JH
our method describes a FL phase with Pauli susceptibility χ ∼
1/TF and a linear specific heat coefficient γ = C/T ∼ 1/TF .
As x is reduced to a critical value xc, the characteristic scale
TF (x), determined from the magnetic susceptibility and lin-
ear specific heat coefficient (Fig. 2 (c,d)), drops continously
to zero, terminating at a QCP. This suppression of TF resem-
bles the Schrieffer mechanism for the reduction of the Kondo
temperature in Hund’s metals [37–40]. The large N QCP is
characterized by powerlaw dependences of the specific heat,
local and uniform susceptibilities.

χ(T ) ∼ 1

T
, χloc(T ) ∼ 1

T 1−α ,
C

T
∼ 1

Tα
(2)

where the exponent α[s] < 1 is function of the spin s =
2S/N . At still smaller x the chain develops a fragile Fer-
romagnetism which disappears at finite temperatures. Here
χ ∼ 1/T 2 and C/T ∼ 1/

√
T characteristics of a critical 1D

Ferromagnetism (FM). There are two notable aspects of the
physics: first, the QCP exhibits an emergent critical charge
fluctuation mode associated with Kondo breakdown, and sec-
ondly the 1D ferromagnetic ground-state is intrinsically quan-
tum critical, transforming into a Fermi liquid with character-
istic scale of order the Zeeman coupling, upon application of
a magnetic field. This last feature is strongly reminiscent of
the observed physics of β−YbAlB4, a point we return to later.

Our large N approach is obtained by casting the local
moments as Schwinger bosons S(j)αβ = b†jαbjβ , where

2S = nb(j) is the number of bosons per site, each individu-
ally coupled to aK channel conduction sea, with Hamiltonian

H =
∑
j

[HFM (j)+HK(j)+HC(j)+λj(nb(j)−2S)], (3)

where (scaling down coupling constants)

HFM (j) = −(JH/N)(b†jαbj+1,α)(b†j+1,βbjβ)

HK(j) = −(JK/N)
(
b†jαψjaα

)
(ψ†jaβbjβ)

HC(j) =
∑
p

εpc
†
paα(j)cpaα(j), (4)

where λj is a Lagrange multiplier that imposes the constraint.
Here we have adopted a summation convention, with implicit
summations over the (greek ) α ∈ [1, N ] spin and (roman)
a ∈ [1,K] channel indices. In the calculations, we take 2S =
K = sN for perfect screening, where s is kept fixed.

Next, we carry out the Hubbard-Stratonovich transforma-
tions:

HK(j)→
[
(b†jαψjaα)χja + h.c

]
+
Nχ̄jaχja
JK

(5)

HFM (j)→
[
∆̄j(b

†
j+1,αbj,α) + h.c

]
+
N |∆j |2

JH
.

The first line is the Parcollet-Georges factorization of the
Kondo interaction, where the χja are charged, spinless Grass-
man fields that mediate the Kondo effect in channel a. The
second line is the Arovas-Auerbach factorization of the mag-
netic interaction in terms of the bond variables ∆j describing
the spinon delocalization. Both b and χ fields have non-trivial
dynamics [33–36], with self-energies given by [41]

Σχ(τ) = g0(−τ)GB(τ), ΣB(τ) = −kg0(τ)Gχ(τ). (6)

Here Gχ(τ), GB(τ) and g(τ) are the local propagators of the
holons, spinons and conduction electrons, respectively. The
conduction electron self-energy is of order O(1/N) and is
neglected in the large-N limit, so that g0(τ)is the bare local
conduction electron propagagator. The holon Green’s func-
tion is purely local, given by Gχ(z) = [−J−1 − Σχ(z)]−1,
but the interesting new feature of our calculation is the de-
localization of the spinons along the chain. Seeking uni-
form solutions where ∆j = −∆ and λj = λ, the spinons
develop a dispersion εB(p) = −2∆ cos p, with propagator
GB(p, z) = [z − εB(p) − λ − ΣB(z)]−1. The momentum-
summed local propagator is then

GB(z) =
∑
p

GB(p, z) =

∫
dεBρ(εB)

z − λ− εB − ΣB(z)
(7)

where ρ(εB) = (2π∆)−1[1 − (εB/2∆)2]−1/2 is the bare
spinon density of states. Using Cauchy’s theorem,

GB(z) =
1

Ω[z]

1√
1− [Ω(z)/2∆]−2

(8)
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where Ω(z) ≡ z − λ− ΣB(z) [41].
Stationarity of the Free energy with respect to λ and ∆

then leads to two saddle-point equations∫ +∞

−∞

dω

π
nB(ω)Im [GB(ω − iη)] = s, (9)

1 + ζ ∆2

J2
H

JH
=

∫
dω

2π∆2
nB(ω)Im [Ω(z)GB(z)]z=ω+iη (10)

which determine λ and JH self-consistently.
In (10) we have added an additional ζ ∆2

J2
H

which stabi-
lizes the quantum critical point. Schwinger boson mean-field
theories suffer from weak first order phase transitions upon
development of finite ∆, due to fluctuation-induced attrac-
tive quartic O(∆4) terms in the effective action. This dif-
ficulty [42], has thwarted the study of quantum criticality
with this method. These first order transitions are actually a
non-universal artifact of the way the large N limit is taken,
circumvented by adding a small repulsive biquadratic term
H ′(j) = ζJH(~Sj · ~Sj+1)2 to the Hamiltonian. For an SU(2)
S = 1/2 moment, the biquadratic term can be absorbed into
the Heisenberg interaction, but for the higher spin representa-
tions of the large N expansion, it contributes a positive quar-
tic correction O(ζ∆4) to the effective action that restores the
second-order phase transitions (at both zero and finite temper-
ature) to the large N limit [41]. In practice, a ζ ∼ 0.001 is
sufficient to remove the first order transition, so that ∆ tunes
linearly with JH across the quantum critical point.

To find GB(ω) and Gχ(ω) we solve Eqs. (6-9) self-
consistently on a linear and logarithmic grid. The entropy
formula from [35, 36] was used to compute the specific heat
associated with these solutions [41].

In the Kondo limit (TK/JH � 1) the local moments are
fully screened, forming a Fermi liquid; in the Schwinger bo-
son scheme, the formation of Kondo-singlets is manifested as
a spectral gap ∆g ∼ TK [36] in the spectrum of the spinons
and holons, where TK = f(T 0

K , s) and T 0
K = De−1/ρJ is

the Kondo temperature (Fig. 2(a)). The opening of this gap
effectively confines the spinon and conduction electron into a
singlet bound state, leaving behind an elastic resonant scatter-
ing potential which satisfies the Friedel sum rule with phase
shift δ = π/N .

In the opposite ferromagnetic limit TK/JH � 1, the chain
forms a fragile ferromagnet. In this case, the spinons are
condensed in the ground-state, but at finite temperatures, the
spinon band is gapped: the constraint (9) ensures that the gap
in the spectrum grows quadratically, ∆b(T ) ∝ T 2, and to-
gether with the quadratic dispersion, this leads to a free energy
F ∝ T 3/2, a critical susceptibility χ ∝ T−2 and a specific
heat coefficient C/T ∝ T−1/2 [32, 41], in agreement with
Bethe ansatz [43–46] . The van-Hove singularity of density of
states means that the ferromagnet is fragile, so that the bosons
only condense, developing true long-range order at absolute
zero.

FIG. 2. (a) The spectral density of spinons −G′′B(ω + iη) for
k = s = 0.3 as a function of TK/JH , shows spinon band at positive
energy and the Kondo-screened spins appearing as confined spinons
at negative energy. The Kondo gap at large x, shrinks linearly with
loweing x, collapsing at about x ≈ 2. (b) Zero temperature magne-
tization m/s (blue) and holon phase shift δχ/π (red) as a function
of TK/JH . (c) The spectral density of holons −G′′χ(ω + iη) as a
function of TK/JH shows the critical mode at the QCP (inset). (d)
specific heat coefficient γ(T ) = C/T vs. temperature as TK/JH is
varied from 5 (blue) to 0.1 (red). The inset in (d) shows the power
law dependence of γ at the QCP.

Fig.2 shows the evolution of properties between these two
limits. As x is reduced, the spectral gap responsible for Fermi
liquid behavior shrinks linearly to zero at the QCP at xc ≈ 2,
an indication of Kondo break-down. This suppression of the
Kondo temperature with x is closely analagous to reduction
of the Kondo temperature by Hund’s coupling [37, 40, 47],
with ∆ ∼ JH playing the role of the Hund’s coupling and the
ratio ξ/a of the spin correlation length to the lattice spacing,
playing the role of the effective moment.

The ground-state ferromagnetic moment is given by

m = lim
T→0

∫ ∞
0

dω

π
nB(ω)ImGB(ω − iη). (11)

which measures the residual positive-energy spinon popula-
tion, which condenses at T = 0 (Fig. 2(b)). m is zero in
the fully screened state, and rises gradually to a maximum
value m = s = 2S/N in the ferromagnetic limit. Note
that m/s < 1 indicates that the magnetic moment is partially
screened by an incipient Kondo effect which continues into
the fragile magnetic phase.

Although our simple model does not allow us to examine
the evolution of the Fermi surface, we can monitor the delo-
calization of heavy electrons by examining the phase shift of
the holons δχ = Im ln[−G−1

χ (0 − iδ)]. The change in the
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number of delocalized heavy electrons ∆nf is related to the
holon phase shift by the relation ∆nf =

∑
a(
δχ
π ) [35, 36],

which is plotted as a function of x in Fig. 2(b). Although we
do not observe a jump in ∆nf at the QCP, there is a sharp
cusp in its evolution at x = xc. One of the interesting aspects
of our results, is that the holon spectrum becomes critical at
the QCP (Fig. 2(c), inset), signaling the emergence of a crit-
ical spinless charge fluctuation that accompanies the critical
formation and destruction of singlets.

The specific heat coefficient γ ≡ C/T = dS/dT , plotted
in Fig. 2(d) shows a “Schottky” peak at T ∼ TF for large x
(blue) which collapses to zero as x → xc(red). At the QCP,
γ(T ) ∼ T−α follows a power-law, where α[s] depends on
the reduced spin s = 2S/N . In the calculations displayed
here, α = 0.6 for s = 0.3 (Fig. 2 d). In the magnetic phase
γ ∼ 1/

√
T again characteristic of 1D FM.

FIG. 3. (a) Uniform spin susceptibility χ as a function of tempera-
ture as TK/JH is varied from 0.1 (red) to 5 (blue). (b) The phase
diagram obtained from the temperature-exponent κ of susceptibil-
ity χ ∼ T−κ, shows the Kondo breakdown induced by the Schri-
effer suppression of the Fermi temperature and separated from the
magnetic phase by a QCP. (c) Dynamical spin susceptibility in FL
(TK/JH = 3.6), QCP (1.65) and FM (0.36) regimes, respectively.

Fig. 3(a) shows the dependence of the uniform spin sus-
ceptibility on x. In the Fermi liquid at large x (blue), there is
a cross over from a Curie susceptibility χ ∼ 1/T at high-T
to a Pauli susceptibility χ ∼ 1/TF at the Fermi temperature
TF . As x decreases, TF decreases to zero and the susceptibil-
ity becomes critical. At the QCP the susceptibility χ ∼ 1/T
follows a simple Curie law. For x < xc, the susceptibility
displays a χ ∼ 1/T 2 characteristic of 1D FM. We use the de-
pendence of the temperature exponent κ = −d logχ/d log T
of the susceptibility on x and temperature to map out the phase
diagram (Fig. 3(b)). The dark blue stripe delineates the renor-
malized Fermi temperature of the Fermi liquid, showing its
collapse to zero as x → x+

c . The corresponding evolution
in the dynamical magnetic susceptibility χ′′(q, ω) of various
phases are shown in Fig. 3(b). The sharp magnon band in the

magnetic phase is smeared at the QCP, denoting fractionaliza-
tion of the spins. The FL phase features a spectral gap, which
is an artificant of large-N method, as well as some remnants
of the magnon band.

We have also studied the effect of a magnetic field [41].
While the Fermi liquid is robust, application of a small mag-
netic field to the QCP or the FM phase [48, 49] immediately
reinstates Fermi-liquid behavior with an scale TB set by the
Zeeman energy (at the QCP) or a combination of the spinon
bandwidth and magnetic field (in the FM phase) [41]. The
ferromagnetic phase is thus intrinsically quantum critical.

There are two interesting aspects of our work that merit
further examination. First, we note that the intrinsic quantum
criticality of the 1D FM phase in our model is reminiscent of
β−YbAlB4, raising the fascinating possiblility that the criti-
cal FM in our one-dimensional model might be stabilized in
higher dimensions by frustration. Second, we note that the
Kondo break-down at the QCP appears to involve a critical
spinless charge degree of freedom. It is intriguing to spec-
ulate whether this might be an essential element of a future
theory of heavy fermion quantum criticality.

The future extension of our work to anti-ferromagnetism
will allow an exploration of the generalized phase diagram.
Moreover, generalizations of the approach to higher dimen-
sional systems are possible, using our approach as an impu-
rity or cluster solver within a dynamical mean-field theory
[50]. The effect of electron hopping between conduction lay-
ers and the resulting RKKY interaction it gies rise to, and pos-
sible non-uniform mean-field solutions are other interesting
avenues for exploration.
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