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Materials that have hysteretic response to an external field are essential in modern information
storage and processing technologies. A myriad of magnetization curves of several natural and
artificial materials have previously been measured and each has found a particular mechanism that
accounts for it. However, a phenomenological model that captures all the hysteresis loops and at
the same time provides a simple way to design the magnetic response of a material while remaining
minimal is missing. Here, we propose and experimentally demonstrate an elementary method to
engineer hysteresis loops in metamaterials built out of dipolar chains. We show that by tuning the
interactions of the system and its geometry we can shape the hysteresis loop which allows for the
design of the softness of a magnetic material at will. Additionally, this mechanism allows for the
control of the number of loops aimed to realize multiple-valued logic technologies. Our findings
pave the way for the rational design of hysteretical responses in a variety of physical systems such
as dipolar cold atoms, ferroelectrics, or artificial magnetic lattices, among others.

PACS numbers:

The search for materials with novel magnetic proper-
ties has been one of the central subjects in condensed
matter physics [1]. A large variety of applications have
been realized into devices that use these properties at our
advantage. Examples of applications are electric trans-
formers, electromagnets, antennas, magnetic resonance
imaging, loudspeakers, beam control, mineral separation,
and high density memories to name a few [2]. The spe-
cific material to be used in these applications depends on
the specific response of it to an external driving mag-
netic field. In some cases, an irreversible response is
needed, and in others a fast reversible response would be
preferred. Materials showing an irreversible (hystereti-
cal) response are dubbed hard magnets and soft magnets
show lack thereof.

Hysteresis is defined as the irreversibility of a process
or the time-based dependence of a system output on
present and past inputs [1, 3]. In physics it is a ubiq-
uitous phenomenon that occurs not only in ferromagnets
but also in piezoelectric materials [4–6], in the deforma-
tion of soft-metamaterials [7, 8], and in shape-memory
alloys to name just a few. The energy dissipated in mag-
netizing and demagnetizing a magnetic material is pro-
portional to the area of the hysteresis loop. Real sys-
tems may depict a plethora of hysteresis which include
symmetric, asymmetric, rounded, squared or butterfly
shaped loops. Due to this shape myriad, the lack of
re-traceability of the magnetization curve has been as-
sociated not only with domain wall pinning [9], but also
with specific mechanisms of spin rotations (coherent rota-
tion, parallel rotation, fanning, curling) [10–12], changes
of magnetic domains [10, 11, 13], the nucleation and an-
nihilation of topological defects [14–17], and geometrical
frustration [18] among others.

While each of these mechanisms explains a particular
hysteresis loop, it is of utmost interest to find a phe-
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FIG. 1: (a), Experimental realization built out of Neodymium
magnets hinged on top of a PTFE plate. Each cylindrical
magnet has a length 2a = 5× 10−3 m, radius r = 0.25× 10−3

m, mass 0.007×10−3 Kg, and saturation magnetization Ms =
0.92×106A/m. Their north and south poles are highlighted in
red and blue, respectively. The distance between the center of
mass of two consecutive rods is 2a+∆. (b), Diagram showing
the angular variable of each dipole. Each dipole is modeled as
two magnetic charges +Q,−Q at the poles of the rod, where
Q = Msπr

2. This is know as the dumbbell model [20].

nomenological model that captures all these hysteresis
loops while remaining minimal. Such a model would al-
low for the design of the softness of a magnetic material,
and for the control of the number of loops aimed to make
possible multiple valued logic technologies [19].

Here, we study a magnetic system that displays the
main types of reversal loops. The basic unit is a chain of
N dipolar rotors with XY rotational symmetry, as shown
in Fig.1. Each rotor consists of a hinged Neodymium
magnet of length 2a and radius r that is free to rotate in
the XY plane, Fig.1b. In our experiments, 1 ≤ N ≤ 12,
rotors were placed at the sites of a Polytetrafluoroethy-
lene (PTFE) plate forming a chain with lattice constant
∆ + 2a where ∆ is the shortest distance between the tips
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FIG. 2: (a,b) Magnetization loops of a system with N = 10 (Supplementary Movies 1, 2). Experimental and numerical data
in blue dots and red circles respectively. In (a) and (b) the chain is oriented along x-axis and y-axis respectively. Blue arrows
indicate evolution of the hysteresis cycle. (c) Energy landscapes showing local minima for b1 < b2 < b3 < bs2 and b4 > bs2.
(e-g) points correspond to the real space configurations shown in (a). Inset shows the energy landscape around point (e). (d)
Energy landscapes showing local minima b1 < b2 < b3 < bsw and b4 > bsw. (p,q) correspond to the real space configurations
shown in (b). The energy is normalized by the energy of two interacting magnets with ∆ = 3mm.

of two nearest neighbor rods, as shown in Fig.1a. The
lowest energy configuration is a head to tail arrangement
where two alike magnetic poles stay the closest, Fig.1a.
This collinear state favors the attraction among magnet-
ics tips of opposite sign. In order to measure the dy-
namical response of the system, we applied a magnetic
field, B, uniform in space and measured the evolution
of the rotation angle of each magnet θi (Fig.1b). The
coarse-grained spin variable for each magnet is defined
as m̂i = (sin(θi), cos(θi)).

Figure 2a depicts the experimental (blue dots) and
numerical (open red circles) results of a magnetization
reversal process of a chain made out of N = 10 rotors
with ∆ = 6a

5 as a function of b = BB−1
c (a dimension-

less magnetic field), applied along the y-axis (Fig.1b).
Bc =

(
µ0

4π

)
Q
a2 is a characteristic internal field, where µ0

is the vacuum permeability. my is the average projec-
tion of the long axis of the magnets along the y-axis,
my = N−1

∑N
i=1 cos θi. The magnitude of b determines

different magnetic configurations and energy landscapes
(Fig.2a,c): initially, b = 0 and the system is in a collinear
state, my = 0 (inset e, Fig.2a). As the field grows from
zero, magnets are prevented from following the direction
of the magnetic field by the internal magnetic interac-
tions. This competition defines the canted phase (inset f,
Fig.2a). The shallow energy minima defining the canted
phase are shown in Fig.2c (inset). At b = bs2 they flip
from the canted state into a vertical position with av-
erage magnetization close to 1 and remain saturated up
to b = bmax (inset g, Fig.2a). From saturation, b is de-
creased towards −bmax. The rotors stay parallel until
at bs1 (0 < bs1 < bs2) they suddenly rotate towards the
x-axis. As the field decreases, they pass the collinear con-
figuration at zero field and rotate a few degrees as long
as b > −bs2, that is, when they suddenly flip toward the
−y-axis and my reaches the saturation value −1 (inset
h, Fig.2a). The resulting magnetization reversal (Fig.2a)
has zero remanence. Figure 2b, shows a qualitatively
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different outcome. Here, mx is the average projection of
the magnetization along the x-axis (Fig.1b) and the re-
sults (experimental and numerical results represented by
blue dots and red open circles respectively) are those of a
magnetization reversal when the chain is oriented paral-
lel to the magnetic field. Initially, b = 0 and the system
is in a collinear state along the x-axis, mx = 1 (inset q,
Fig.2b). The field decreases from zero towards −bmax

and the system remains still until at the switching field
b = −bsw all rotors suddenly flip towards −x resulting
in mx = −1 (inset p, Fig.2b). The process is repeated
as the field grows from −bmax towards bmax, resulting in
the rectangular loop shown in Fig.2b. The sudden change
among metastable magnetic states (Fig.2d) corresponds
to a first order phase transition induced by the exter-
nal field. Indeed, the system energy landscape (Fig.2d,
depicted in red), shows the two collinear states (two mini-
mum at θ = ±π/2) coexisting at b = 0. The equivalence
of these two magnetic states is lifted by the field, and
the two possible states become a single one at b = ±bsw

(green-magenta points Fig.2d).
Next we proceed to examine the dynamics of the sys-
tem in detail using molecular dynamics simulations. In
this description, inertial magnets interact through the
full long-range Coulomb potential in the dumbbell ap-
proach. The equations of motion for the angular variable
are:

I
d2θi
dt2

=
(µ0

4π

)∑
i6=j

QiQj~ai×
~rij
r3
ij

−η dθi
dt

+
(
~Pi × ~B

)
·ẑ (1)

where i is the index for charges ±Qi at the tip of dipole i,
θi is the angle variable shown in Fig.1b main text, and ~ai
is the vector that goes from the rotation center to charge
Qi. In this model, the tip of each rod has a magnetic
charge of magnitude Q = Msπr

2 that interacts with all
other magnetic poles (note that the total magnetic charge
per dipole is zero), I is its moment of inertia and η is the
damping of a rotor in the chain [20]. The last term at the
right hand side of Eq.(1) is the torque due to the action
of the external magnetic field on the localized charges at
the end of the magnets. ~Pi = 2aQm̂i is the magnetic
dipolar moment. We solved this set of coupled equations
using the Verlet algorithm.
Additionally, energy minimization techniques were used
for comparison with the inertial case with damping. We
found that hysteresis loops are mainly due to interac-
tions. The set of physical parameters employed in simu-
lations were directly measured by tracking the evolution
of a magnet that was slightly perturbed with respect to
its equilibrium position (Supplementary Fig. 2, Supple-
mentary Movie 4, and Supplementary Equations 1-3).
In this system, three time scales emerge:

τB = 2π

(
I

2aQB

)1/2

, τη = I/η, τc = 2π

(
4πaI

µ0Q2

)1/2

(2)
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FIG. 3: (a), Experimental hysteresis loops of chains with N =
2 (magenta squares), 8 (red filled circles), 10 (green triangles)
and 12 (blue open circles) rotors, for ∆ = 6a/5. The inset
corresponds to hysteresis loops from numerical simulations.
Black arrows indicate the positions of the first order estimates
for bN=2

s1 and bN=2
s2 . (b) Experimental and numerical (inset),

hysteresis loops for chains with N = 10 and ∆ = 6a/5 (red
dots), 8a/5 (green open triangles), 2a (blue open circles).

They correspond to the oscillations of a magnet in a uni-
form magnetic field B, the time for the amplitude of its
oscillations to decay to 1/e its initial value, and the fluc-
tuation time of a neutral plasma of charges ±Q that are
at an initial distance a respectively. The small oscilla-
tions of a rotor in a long chain yields the time scale,
tc ∼ I1/2∆3/2Q−1a−1, which is shorter than τB , τη, and
τc. Therefore, tc sets an upper bound for the applied
field sweeping rate, α. For the parameters mentioned
above (∆ = 3 mm) it yields tc ∼ 4× 10−2 seconds. With
α � bmaxBc/tc, the magnets have enough time to re-
lax. Indeed, this is the case as long as the external field
sweeping frequency set by α/(bmaxBc), is smaller than
the Coulomb frequency 1/tc associated with the fastest
dynamical time scale of the system, in which case the
width of the loop does not depend on α.

Having shown how the orientation of the chain respect
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to the external field determines the shape of the loop at
qualitative level, we describe next how the reversal loop
of Fig.2a, changes in terms of the physical parameters
of the system. In all experiments, α = 3 × 10−5 T/sec
and bmax = Bmax/Bc = 1.5, where Bc = 2.89× 10−3 T.
By tuning ∆ and N we probe how my changes with the
strength of the coupling among magnets and the size of
the system [20]. Figure 3a shows experimental and nu-
merical (inset) reversal loops for chains with N = 2, 8, 10
and 12 and ∆ = 6a/5. It is apparent that as N grows, the
loops move toward larger fields and quickly saturate. Al-
ready the N = 10 and N = 12 (green triangles and blue
open circles respectively) loops seem very alike. These
behavior is in good agreement with numerical simula-
tions (inset Fig.3a) .
At a qualitative level, the loop of the N = 2 chain resem-
bles well the shape of hysteresis loops with larger N , as
can be seen in Fig.3a (Magenta filled squares) (Supple-
mentary Fig.6). Therefore, the N = 2 case is a useful toy
model to compute bs1 and bs2 at scaling level. Indeed,
bN=2

s1 ≈ 3
64
√

2
(4−∆/a) at leading order in ∆/a (Supple-

mentary information). Evaluating for ∆/a = 6/5 we
obtain bN=2

s1 ≈ 0.10 in close agreement with our experi-
mental results (see Fig.3a). Likewise, a stability analysis
at θ ∼ π/2 (around the collinear configuration depicted
in Fig.1) yields a formula for bs2 that allows to quantify
the width of the loops in terms of the physical parameters
of the magnetic chain and the length of it. Noting that
the torque provided by Coulombic forces should equal the

one provided by Zeeman interactions 2aQB ∼ a
(
Bca

2Q
∆2

)
we can get a simple estimate for bs2 ∼ a2

2∆2 . Evaluating
for ∆/a = 6/5 we obtain bN=2

s2 ≈ 0.34 which is close to
our experimental results (see Fig.3a).
Figure 3b shows the magnetization loops of systems with
N = 10 rotors and ∆ ∈ (3, 5) mm. Experiments and
simulations (inset Fig.3b) show that saturation fields and
width of the loops decrease as ∆, increases. Indeed, for
larger ∆, the interactions decline and so does it the differ-
ence among torques to destabilize parallel and collinear
configurations of magnets. From the previous scalings it
is clear that even when both saturation fields decrease as
∆ grows, bs2 does it in a more dramatic fashion, antici-
pating that as ∆ grows, the width of a hysteresis loop be-
comes narrower. In the ∆→∞ limit, magnets decouple
from their neighbors and the magnetization reversal ap-
proaches that of an isolated rotor. It is apparent that the
numerical case tends to underestimate saturation fields,
this effect being larger for the case of bs1. In experiments,
imperfections in the orientations of the hinges and small
variations in the damping coefficient for each rotor favor
the departure of all magnets from the parallel state later
than in the numerical case. The lower value of bs2 from
numerical simulations is due to the fact that static fric-
tion is neglected in the model.
We further analyze the role of magnetic disorder by
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FIG. 4: (a), Hysteresis loop obtained for a system of dipoles
made of two linear chains (∆1 = 3 × 10−3m, and ∆2 = 4.0 ×
10−3m) arranged as a T . Real space configurations for initial
state and fully polarized state are shown in top, and bottom
insets respectively. The red painted side of each magnet is the
magnetic north pole (Supplementary Movie 3). (b-d), show
numerical simulations for a T-system when ∆1 = 3.0×10−3m,
h = 1.5∆1, and ∆2/∆1 = 1, 4/3, 2 respectively.

studying the dynamics of a chain with magnetic vacan-
cies. Using the same experimental setup, but randomly
removing dipoles (Supplementary Figure 9) we find that
as the number of vacancies increases, the area of the loops
shrink and the concavity of the reversal curve changes as
the system approaches the limit of the non interacting
case (N = 1). However, the magnetic response of the ba-
sic building block is robust to a low density of vacancies.
Finally, we applied the previous information to design
hysteresis loops on demand. In the same spirit as in the
Preisach phenomenological model [3], the dipolar chains
were used as building blocks (hysterons) to produce the
complex hysteresis loop shown in Fig.4 a. This figure cor-
responds to the magnetization reversal of a T-shaped sys-
tem (insets in Fig.4 a) when the external field is applied
along the y-axis. A bigger central loop due to the reversal
of the vertical chain is apparent, while the two smaller
loops are product of the reversal of the horizontal one.
Figs.4 b-d, show that as the interaction among rotors
belonging to the vertical chain decreases (∆2/∆1 grows
from 1.0 to 2.0), the three loops (Fig.4a) split. Showing
that by changing ∆2 it is possible to design the magnetic
response using dipolar chains as basic (hysterons) [3, 9]
building blocks. This demonstrates that we can enhance
the coercivity of a system or produce satellite loops if
needed.
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The results presented here allow for the design of hys-
teresis loops with any material whose basic components
are interacting polar objects with XY symmetry. There
are various examples of such objects across the scales:
magnetic rods or needles at the macroscale [20], micro-
scopic rotors [21–23], magnetic nano-crystals in magne-
totactic bacteria [24], polar molecules confined in carbon
nanotubes [25–27], gases of polar molecules in one di-
mensional traps [28], or individual magnetic atoms [29].
Implementation of logic operations [30], multiple valued
logic [19], meta-materials with unusual magneto-optical
properties [31, 32] or the production of shaped nanopar-
ticles for hyperthermia, a non-invasive technique for drug
release or tumor treatment [33] can be realized with cur-
rent technology using the ideas presented in this letter.
It remains an open question if variations of our approach
could be used for the study of nontrivial textures such as
skyrmions at the macroscale [34].

Our proposal is a step forward in the quest for new ma-
terials with engineered magnetic properties as it provides
an amenable and scalable playground to produce on de-
mand magnetic responses by manipulating interactions,
and geometry.
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