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One of the cornerstones for topological quantum computations is Majorana zero mode, which
has been intensively searched in fractional quantum Hall systems and topological superconductors.
Several recent works suggest that such exotic mode can also exist in one dimensional (1D) inter-
acting double-wire setup even without long-range superconductivity. A notable instability in these
proposals comes from inter-channel single-particle tunneling that spoils the topological ground state
degeneracy. Here we show that 1D Dirac semimetal (DSM) nanowire is an ideal number-conserving
platform to realize such Majorana physics. By inserting magnetic flux, a DSM nanowire is driven
into 1D crystalline-symmetry-protected semimetallic phase. Interaction enables the emergence of
boundary Majorana zero modes, which is robust as a result of crystalline symmetry protection. We
also explore several experimental consequences of Majorana signals.

Introduction - Anyons are natural generalizations of
bosons and fermions from the perspective of quantum
statistics. Interchanging a pair of anyons can induce ei-
ther a non-trivial phase factor eiθ 6= ±1 in the wave-
function (Abelian anyons), or a rotation operation of the
corresponding many-body wave function among a degen-
erate set of locally indistinguishable states (non-Abelian
anyons) [1]. Anyonic physics was first pointed out in
the context of fractional quantum Hall (FQH) effect [2],
where anyons emerge as bulk quasiparticle excitations
in an FQH system. A well-known example here is Ma-
jorana quasiparticle (Ising anyon), which emerges in a
ν = 5

2 Moore-Read FQH state [3]. The non-Abelian
statistics of Majorana quasiparticle makes it a promis-
ing candidate for building a topological quantum com-
puter [4]. Besides FQH systems, Majorana physics was
also studied in the topological superconductor (TSC) af-
ter the pioneering works by Read and Green [5], Ivanov
[6] and Kitaev [7]. In particular, Kitaev pointed out the
existence of boundary Majorana zero mode (MZM) in
a one-dimensional (1D) p-wave TSC. Such TSC is topo-
logically distinct from a conventional superconductor due
to the MZM-induced ground state degeneracy (GSD) [8].
The degenerate ground states are further labeled by Z2

fermion parity of the system, and their stability is guar-
anteed by this Z2 parity symmetry. This Kitaev model
serves as the underlying mechanism of recent intensive
experimental efforts in realizing MZM physics in 1D semi-
conductor devices [9–14].

Theoretically, it was pointed out that MZM will be-
come unstable in a single 1D quantum wire if strong
quantum fluctuations destroy long-range superconductiv-
ity [15]. For a double-wire setup, however, MZMs can co-
exist with quantum fluctuations when inter-wire single-
particle hopping vanishes while pair hopping interaction
dominates [15–24]. Pair hopping process fluctuates parti-
cle number of each quantum wire only by a multiple of 2.
Thus in each quantum wire, an emergent Z2 fermion par-
ity P (2) is well defined. Consequently, P (2) defines dou-
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FIG. 1. In (a), DSM nanowire is driven into a rotation-
symmetry-protected 1D semimetal when flux Φ = lΦ0 ( 1

2
<

l < 3

2
) is inserted. The emerging 1D Dirac points originate

from | 3
2
, 0, ↑〉 (green line) and | − 1

2
, 0, ↓〉 (red line), as shown

in (b). In (c), we show the process of pair-hopping interac-
tion g, where two “red” electrons hop to the “green” electron
states simultaneously. This process respects four-fold rota-
tion symmetry, and enables the emergence of Majorana end
states.

bly degenerate ground states, which mimics the physics
in Kitaev model. However, a well-known issue in the
double-wire setup comes from “Z2 parity breaking” in-
duced by inter-wire single particle tunneling, which is
generally unavoidable. Such tunneling process explicitly
violates P (2) symmetry and thus spoils Majorana physics.
In this work, we demonstrate how crystalline symme-

tries naturally solve the “P (2) breaking” issue, and thus
stabilize the Majorana physics without long-range su-
perconductivity. We show that 1D nanowire of three
dimensional Dirac semimetals (DSM) [25, 26] possesses
crystalline-symmetry-protected gapless Dirac points, of-
fering us a material realization of stable semimetallic
phase (Fig. 1 (a)). Therefore, a DSM nanowire man-
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ifests itself as an effective double-wire setup, with each
“quantum wire” labeled by a representation of the crys-
talline symmetry group. Inter-“wire” pair-hopping in-
teraction drives the system into an interaction-enabled
topological phase with doubly degenerate ground states
and MZMs (Fig. 1 (c)). On the other hand, the ori-
gin of P (2)-breaking, inter-“wire” single-particle tunnel-
ing, is forbidden in our rotation-invariant system, since
it explicitly breaks the rotation symmetry. As a result,
rotational symmetry protects the robustness of the Majo-

rana physics in the DSM nanowire system. The bound-
ary MZM in our setup bridges between ground states
with different angular momentum representations of the
rotational crystalline group. It is thus dubbed “repre-
sentation MZM” (rMZM) to distinguish from conven-
tional MZMs in TSCs. Experimentally, rMZM is shown
to exhibit exponentially localized zero-bias peak signal,
which can be detected via scanning tunneling microscopy
(STM). We also propose a feasible setup to explore the
transport physics of rMZM, where the transport phase
diagram and experimental signals are discussed.
1D Dirac points in DSM nanowires - The following

k · p Hamiltonian describes a typical DSM protected by
the C4 symmetry[25, 26]

Hk·p =









M(k) Ak− 0 0
Ak+ −M(k) 0 0
0 0 −M(k) −Ak−
0 0 −Ak+ M(k)









, (1)

The basis function Ψ is
(|P, 32 〉, |S, 12 〉, |S,− 1

2 〉, |P,− 3
2 〉)T , where spin-orbit-

coupled angular momentum J ∈ {± 1
2 ,± 3

2} acts
as a pseudo-spin index. Notice that Hk·p takes a
block-diagonal form of diag(H↑, H↓), with each block
describing a Weyl Hamiltonian in the corresponding spin
(↑ or ↓) sector. Here M(k) =M0 −M1k

2
z −M2(k

2
x + k2y)

and k± = kx ± iky, with A > 0 and M0,1,2 > 0. The
bulk Dirac points are aligned along rotational invariant
kz axis at kz = ±

√

M0/M1. The ↑ and ↓ sectors are
related via H↓(M(k), A) = H↑(−M(k),−A). Thus,
we will focus on H↑, and the properties of H↓ can be
obtained analogously.
The DSM nanowire can be better described in cylin-

drical coordinates. We rewrite H↑ in terms of kr = −i∂r
and kθ = − i

r∂θ with angular variables r =
√

x2 + y2

and θ = arctan y
x . Solving the eigen-state problem [27],

the low-energy eigenstates of H↑ are found to be Fermi
arc states on the side surface of the nanowire [28]. For
a nanowire with radius R, surface Fermi arc spectrum
E↑ = −A

R (m + 1
2 ), where m = 0,±1,±2, ... is the eigen-

value of kθ. The spin-down part of H0 behaves similarly
with E↓ = A

R (m + 1
2 ). Notice that the complete Fermi

arc spectrum always exhibits a finite gap of A/R, which
originates from the π spin Berry phase of the Fermi arc
states [29]. In this nanowire geometry, total angular mo-
mentum Jtot is a good quantum number, while it is ac-

tually composed of two parts: (1) angular contribution
from kθ and (2) pseudo-spin J which is encoded in the
basis Ψ. In particular, we find that a state with kθ = m
carries Jtot = m+ 2σ+ 1

2 in the spin-σ (σ = ± 1
2 ) sector.

Thus, we label an energy eigen-state as |Jtot,m, σ〉 where
spin index σ ∈ {↑, ↓}.
The 1D Dirac points can be realized by inserting mag-

netic flux to remove the Berry phase effect. The ap-
plied magnetic field should be precisely aligned along the
nanowire to preserve the C4 symmetry. With flux Φ = l
(in units of Φ0 = h/e) inserted, E↑/↓ = ∓A

R (m + 1
2 − l).

The π Berry phase is exactly canceled, when π-flux (l =
1
2 ) is inserted. Consequently, | 32 , 0, ↑〉 touches | − 1

2 , 0, ↓〉
at kz = 0, which is similar to the worm-hole effect of
topological insulator nanowire [30]. When Φ is further in-
creased, | 32 , 0, ↑〉 intersects with |− 1

2 , 0, ↓〉 to form a gap-
less inverted band structure (1D Dirac points), as shown
in Fig. 1 (b). Since | 32 , 0, ↑〉 and | − 1

2 , 0, ↓〉 belong to
different representations of the rotational group, the 1D
Dirac points are robust and thus protected by C4 sym-
metry. In Fig. 1 (a), we verify the above results in the
tight-binding model obtained from regularizing the k · p
Hamiltonian on a cubic lattice [31]. The magnetic field
required for inducing 2π flux is around 1T for a nanowire
with a diameter of 100 nm [27]. This is how we assemble a
1D rotation-symmetry-protected semimetal by inserting
magnetic flux into the DSM nanowire.
Interaction-induced Majorana physics - The low-

energy theory of 1D Dirac points is well captured by the
2-channel Luttinger liquid (LL) theory,

H0 =
∑

s=1,2

∫

dx
v

2
[ψ†

s,R(x)∂xψs,R(x)− ψ†
s,L(x)∂xψs,L(x)].

Here ψ†
1,R(L) creates a right (left) moving electron with

Jtot = − 1
2 , while ψ†

2,R(L) creates a right (left) moving

electron with Jtot = 3
2 . Two-particle processes that

preserve both U(1) charge conservation and C4 rotation
symmetry [32] are:

H1 =

∫

dx[gψ†
1,Rψ

†
1,Lψ2,Rψ2,L + g1ψ

†
1,Rψ

†
2,Lψ2,Rψ1,L

+g2ψ
†
1,Rψ

†
2,Rψ2,Lψ1,L + h.c.] (2)

If we move the Fermi level slightly away from the Dirac
points (zero energy in Fig. 1 (a) and (b)), both g1 and g2
scatterings involve certain amount of momentum trans-
fer, and will be suppressed in a translational invariant
system. Inter-channel pair-hopping g, however, preserves
both momentum conservation and C4 symmetry (angu-
lar momentum transfer ∆Jtot = 4). As will be shown
below, it is g that is responsible for Majorana physics.
We next apply Abelian bosonization technique [33] and

define ψs,R ∼ ei
√
π(φs−θs) and ψs,L ∼ e−i

√
π(φs+θs) fol-

lowing the convention in [34]. It is convenient to in-
troduce the bonding and anti-bonding fields as φ± =
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1√
2
(φ1 ± φ2) and θ± = 1√

2
(θ1 ± θ2), as well as K± to be

the Luttinger parameters for bonding and anti-bonding
channel. The bonding sector remains gapless, while the
anti-bonding sector might open up a non-trivial gap with
the Hamiltonian

H− =

∫

dx
v

2
[K−(∂xφ−)

2 +
1

K−
(∂xθ−)

2]

+g

∫

dx cos 2
√
2πθ−. (3)

We will focus on K− < 1 where g is relevant under
renormalization group analysis. At Luther-Emery point
(K− = 1

2 ), Eq. 3 can be exactly mapped to the topo-
logical Kitaev model with MZM end states [16, 27].
Such mapping is achieved by refermionizing Eq. 3 with

ψ̃R ∼ ei
√
π(φ̃−θ̃) and ψ̃L ∼ e−i

√
π(φ̃+θ̃), where φ̃ = φ−/

√
2

and θ̃ =
√
2θ−. Away from K− = 1

2 , the above mapping
fails while we will show that Majorana physics (both GSD
and Majorana end states) persists.

The ground state is obtained by minimizing
cos 2

√
2πθ− and pinning θ− = (nθ + 1

2 )
√

π/2, where
nθ ∈ Z is an integer-valued operator. Since θ− has√
2π periodicity, there are two degenerate ground states

|θ− = ± 1
2

√

π
2 〉, which are characterized by the emergent

Z2 fermion parity P (2). Physically, P (2) counts the
parity of electron number in the Jtot = − 1

2 subspace,

P (2) = (−1)
√

1
π

∫
L

0
dx∂xφ1 = P+P−, (4)

where a nanowire with finite length L is considered and

P± = ei
√

π/2(φ±(L)−φ±(0)). With P (2)θ−(P
(2))−1 =

θ− −
√

π
2 , P

(2) interchanges |θ− = ± 1
2

√

π
2 〉 from one to

another. Quantum superposition principle, however, al-
lows us to define the following degenerate ground states,

|±〉 = 1√
2
[|θ− =

1

2

√

π

2
〉 ± |θ− = −1

2

√

π

2
〉], (5)

where |+〉 and |−〉 are characterized by even and odd
P (2) parity, respectively. Since P (2) is a global property
of the system, the degeneracy here is topological, which
can NOT be distinguished via any local measurement.

Topological GSD can also be revealed by construct-
ing rMZM operators explicitly. Imposing open boundary
condition at x = 0 gives rise to ψl,L(0) + ψl,R(0) = 0

for l = 1, 2, which corresponds to φl(0) = n
(1)
l

√
π up to

an unimportant constant. Here, n
(1)
l ∈ Z is an integer-

valued operator. Introducing n
(1)
+ = n

(1)
1 + n

(1)
2 and

n
(1)
− = n

(1)
1 , the boundary condition fixes the value of φ±

as φ+(0) = n
(1)
+

√

π/2 and φ−(0) = (2n
(1)
− − n

(1)
+ )

√

π/2.

It is important to notice that [n
(1)
− (x), nθ(x

′)] = i
πΘ(x−

x′), while n
(1)
+ always commutes with nθ and behaves like

a c-number. Following Ref. [35], we construct rMZM op-

erator α1 at x = 0 and α2 at x = L as,

α1 = eiπ(n
(1)
−

+nθ), (6)

α2 = eiπ(n
(2)
−

+nθ), (7)

where we have defined the boundary condition at x =

L to be φ+(L) = n
(2)
+

√

π/2 and φ−(L) = (2n
(2)
− −

n
(2)
+ )

√

π/2 in a similar way. The Majorana properties
of α1,2 can be easily checked, where [α1,2, H−] = 0 and
α2
1 = α2

2 = 1. Starting from a ground state |+〉, one can
easily show that α1,2|+〉 = |−〉 up to some phase factors.
This also proves the topological GSD.
The essential role of C4 symmetry in protecting rMZM

should be emphasized. C4 symmetry enforces inter-
channel single-particle tunneling events to vanish as they
break C4 explicitly, which makes P (2) symmetry well-
defined. Since C4θ−C

−1
4 = θ− +

√

π
2 , it is easy to check

that C4|±〉 = ±|±〉, which proves C4 = P (2). The equiv-
alence between a N -fold discrete symmetry ZN and an
emergent ZM fermion parity P (M) is a quite general re-
sult for two-channel systems, which is discussed in details
in the supplementary materials [27].
We stress that our theory is not limited to the C4-

symmetric DSM nanowire. For a 1D nanowire grow-
ing along the x direction, the crystalline structure in
the cross-section (y-z plane) is characterized by a two-
dimensional (2D) point group G2D, where every sym-
metry operation in G2D leaves the x direction invariant.
Therefore, it is natural to generalize our theory from C4

group to general 2D point groups. In [27], we identify
simple criteria to determine whether a given symmetry
group G could give rise to P (2) parity and present a
complete discussion of all 2D point groups, as well as
their double groups. In particular, our theory predicts
all possible irreducible representations for each G2D that
could support Majorana physics, and thus establishes the
guideline for the search of other candidate materials.
Experimental detection - One important approach to

probe Majorana signals is to map out the spatial pro-
file of spectral density using STM technique, and seek
for exponentially localized zero-bias peak that originates
from MZM bound state. Following this logic, we con-
sider the single-electron-tunneling problem from a Fermi
liquid lead to the DSM nanowire and seek for rMZM sig-
nals. This tunneling process changes both electron num-
ber and P (2) simultaneously. In particular, the ground
state is changed from |0〉 = |N, p〉 with N electrons and
P (2) = p to |1〉 = |N + 1,−p〉 with N + 1 electrons
and P (2) = −p via this tunneling process. For a DSM
nanowire at x ∈ [0, L], in the L → ∞ limit, transition
matrix element of injecting a single electron at x = x0
(0 ≤ x0 ≪ L) can be calculated with the help of mode
expansion technique [27, 36], and the resulting spectral
density is

ρ(x, ω → 0) = |〈1|ψ†
1,R|0〉|2 = N (x, ǫ,K±) e

− π
4K−

x
ξ (8)
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(a) (b)

(c) (d) (e)

FIG. 2. (a) We apply a step-function gate to DSM nanowire to fabricate the 2LL/LL configuration. (b) Tunneling phase
diagram of 2LL/LL junction with K

−
< 1. In (c) - (e), we systematically plot the boundary conditions of the following fixed

points: DFP, PFP and A0FP. The dashed circle that contains a pair of electrons signals pair-tunneling/backscattering process.

where ξ =
√

v
8πgK−

is the correlation length of the sys-

tem and ǫ is the short distance cut-off. WhileN (x, ǫ,K±)
counts the power-law contribution of this transition pro-
cess [27], the exponential part of ρ(x, ω → 0) unambigu-
ously reveals an exponentially localized rMZM on the
boundary, which is ready to be detected using STM tech-
nique. Since ξ ∼ 1/

√

gK−, the stronger the interaction,
the more localized rMZM will be.

Finally, we consider a 2-channel LL/LL lead (2LL/LL)
junction, which can be experimentally achieved by apply-
ing a step-function-like gating to the DSM nanowire, as
shown in Fig. 2 (a). With this gating configuration, the
right part of the nanowire (x > 0) is in the 2-channel
LL regime, while the left part (x < 0) becomes a single-
channel LL that plays the role of a lead. The rMZM
is expected at the interface between 2-channel LL and
single-channel LL (x = 0).

The transport physics of 2LL/LL junction is charac-
terized by tunneling fixed points. Fig. 2 (c) - (e) depict
three stable fixed points for different physical boundary
conditions at the interface. (i) Disconnecting fixed point
(DFP) signals the promotion of normal reflection process,
where electrons will be perfectly reflected at the interface
between 2LL and LL (Fig. 2 (c)). (ii) Pair-tunneling
fixed point (PFP) characterizes the resonant Andreev
reflection process [37], where electrons will pair up and
tunnel through the interface without any backscattering,
as shown in Fig. 2 (d). (iii) A0 fixed point (A0FP) also
signals normal reflection process of electrons from the
LL lead, while on the 2LL side, electrons of channel-1
(channel-2) will pair up and be scattered together into
channel-2 (channel-1) at the interface, as shown in Fig.
2 (e). This is essentially different from the case of DFP,

where electrons will be individually backscattered with-
out any channel-switching. We notice that DFP and PFP
have been previously discussed in a TSC/LL junction
[38], while A0FP is a new fixed point in our system.

With the “delayed evaluation of boundary condition”
(DEBC) method [39, 40], we verified the existence of all
three fixed points (DFP, PFP, and A0FP) and evaluate
the scaling dimensions of perturbation terms at each fixed
point. A brief introduction of this method and details
of fixed point information can be found in the supple-
mentary materials [27]. The complete phase diagram is
mapped out in Fig. 2 (b) for K− < 1. In the strongly
attractive regime (K+ < 1 − 2K0), PFP is stable and
promotes the Andreev reflection process. In the strongly
repulsive limit (K+ > 4−2K0), both DFP and A0FP are
stable, and the tunneling conductance is suppressed.

A realistic system is most likely to fall into the weakly
interacting regime (K0,K+ ≈ 1) with both stable PFP
and A0FP. In a transport measurement, one expects a
zero-bias conductance peak at PFP, while a vanishing
conductance at A0FP. The co-existence of two stable
fixed points suggests the emergence of an intermediate
unstable fixed point which characterizes the transition
between PFP and A0FP. This novel phase transition is
intriguing, which is definitely worthy to be explored in
future works. At last, the role of rMZM is explored by
mapping out a Majorana-free phase diagram where we
quench pair-hopping interaction g at x > 0. In this case,
we find a completely different phase diagram with more
exotic phases [27]. Especially, the system falls into A0FP
near K0,+ ≈ 1, while PFP only shows up in the strongly
attractive regime. Therefore, the appearance of weakly
interacting PFP in Fig. 2 (b) is a direct consequence of
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rMZM, and serves as a transport evidence of rMZM.
Discussion - In summary, we have proposed that

magnetic-flux insertion drives DSM nanowire into a 1D
crystalline-symmetry-protected semimetal, which serves
as an ideal platform to realize Majorana physics without
long-range superconductivity. In particular, crystalline
symmetry forbids inter-channel single-particle tunneling,
and thus guarantees the stability of Majorana physics.
We notice that DSM nanowire of Cd3As2 has been suc-
cessfully fabricated [41, 42], while these nanowires have
been grown along [112] direction, so that C4 rotation
symmetry is explicitly broken and fails to support rMZM.
Other promising candidate materials include heterostruc-
tures of Kondo materials [43], where a correlated DSM
phase protected by C4 symmetry is found. Finally, we
emphasize once again that our theory is general and not
limited to the DSM nanowires. The classification of 2D
point groups in the supplementary materials will inspire
more future efforts into realizing symmetry-protected
Majoranas in number conserving systems.
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[22] N. Lang and H. P. Büchler, Physical Review B 92, 041118
(2015).

[23] C. Chen, W. Yan, C. Ting, Y. Chen, and F. Burnell,
arXiv preprint arXiv:1701.01794 (2017).

[24] F. Iemini, L. Mazza, L. Fallani, P. Zoller, R. Fazio,
and M. Dalmonte, Physical Review Letters 118, 200404
(2017).

[25] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu,
H. Weng, X. Dai, and Z. Fang, Physical Review B 85,
195320 (2012).

[26] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Physical
Review B 88, 125427 (2013).

[27] See Supplementary Materials at XX for a solution of
Dirac semimetal in cylindrical coordinates, the mag-
netic field dependence, a microscopic derivation of pair-
hopping interaction g, an estimation of the magnitude
of g, a discussion about Klein factors and the Majorana
solution at Luther-Emery point, a discussion of the emer-
gent ZM fermion parity from a ZN symmetry, a general-
ization from C4 symmetry to the 2D point groups, a de-
tailed calculation of single electron tunneling amplitude,
an introduction of DEBC method and a detailed discus-
sion about the 2LL/LL junction phase diagram, which
contains [44–53].

[28] K.-I. Imura and Y. Takane, Physical Review B 84, 245415
(2011).

[29] In the limit R → ∞, the energy gap in both spin sectors
approaches zero and DSM nanowire evolves into a bulk
DSM sample with two bulk Dirac points connected by
Fermi arc states.

[30] G. Rosenberg, H.-M. Guo, and M. Franz, Physical Re-
view B 82, 041104 (2010).

[31] The nanowire configuration is modeled by taking peri-
odic (open) boundary condition along the z (x and y)
direction. Realistic parameters of Cd2As3 are applied in
the calculation, and the cross section in the x-y plane is
chosen to be a 16× 16 square.

[32] Notice that the effective k · p Hamiltonian in Eq. 1 has
the full-rotation O(2) symmetry, since we focused on the
continuum limit and dropped higher order terms. How-
ever, when we consider interaction effects, it is important
to distinguish this artificial O(2) symmetry from the re-
alistic C4 symmetry. This is because O(2) is a stronger
symmetry and also imposes a stronger constraint to inter-
action terms. In particular, the pair-hopping term g that
leads to Majorana physics transfers angular momentum
by ∆Jtot = 4. As a result, pair-hopping interaction only
preserves C4 symmetry, but explicitly breaks O(2) sym-
metry.

[33] T. Giamarchi, Quantum physics in one dimension, Vol.
121 (Oxford university press, 2004).



6

[34] E. Fradkin, Field theories of condensed matter physics
(Cambridge University Press, 2013).

[35] D. J. Clarke, J. Alicea, and K. Shtengel, Nature Com-
munications 4, 1348 (2013).

[36] A. Keselman and E. Berg, Physical Review B 91, 235309
(2015).

[37] K. T. Law, P. A. Lee, and T. K. Ng, Physical review
letters 103, 237001 (2009).

[38] L. Fidkowski, J. Alicea, N. H. Lindner, R. M. Lutchyn,
and M. P. Fisher, Physical Review B 85, 245121 (2012).

[39] M. Oshikawa, C. Chamon, and I. Affleck, Journal of
Statistical Mechanics: Theory and Experiment 2006,
P02008 (2006).

[40] C.-Y. Hou, A. Rahmani, A. E. Feiguin, and C. Chamon,
Physical Review B 86, 075451 (2012).

[41] C.-Z. Li, L.-X. Wang, H. Liu, J. Wang, Z.-M. Liao, and
D.-P. Yu, Nature communications 6 (2015).

[42] L.-X. Wang, C.-Z. Li, D.-P. Yu, and Z.-M. Liao, Nature
communications 7 (2016).

[43] S. Ok, M. Legner, T. Neupert, and A. M. Cook, arXiv
preprint arXiv:1703.03804 (2017).

[44] C. Kane, R. Mukhopadhyay, and T. Lubensky, Physical

review letters 88, 036401 (2002).
[45] J. C. Teo and C. Kane, Physical Review B 89, 085101

(2014).
[46] T. Neupert, C. Chamon, C. Mudry, and R. Thomale,

Physical Review B 90, 205101 (2014).
[47] E. Sagi and Y. Oreg, Physical Review B 90, 201102

(2014).
[48] J. Klinovaja and Y. Tserkovnyak, Physical Review B 90,

115426 (2014).
[49] B. Bellazzini, M. Mintchev, and P. Sorba, Journal

of Physics A: Mathematical and Theoretical 40, 2485
(2007).

[50] B. Bellazzini, M. Burrello, M. Mintchev, and P. Sorba,
arXiv preprint arXiv:0801.2852 (2008).

[51] B. Bellazzini, M. Mintchev, and P. Sorba, Physical Re-
view B 80, 245441 (2009).

[52] A. Agarwal, S. Das, S. Rao, and D. Sen, Physical review
letters 103, 026401 (2009).

[53] J.-P. Jay-Gerin, M. Aubin, and L. Caron, Solid State
Communications 21, 771 (1977).


