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We investigate the dynamics of a microwave-driven Josephson junction capacitively coupled to a lumped
element LC oscillator. In the regime of driving where the Josephson junction can be approximated as a Kerr
oscillator, this minimal nonlinear system has been previously shown to exhibit a bistability in phase and amplitude.
In the present study, we characterize the full phase diagram and show that besides a parameter regime exhibiting
bistability, there is also a regime of self-oscillations characterized by a frequency comb in its spectrum. We
discuss the mechanism of comb generation which appears to be different from those studied in microcavity
frequency combs and mode-locked lasers. We then address the fate of the comb-like spectrum in the regime of
strong quantum fluctuations, reached when nonlinearity becomes the dominant scale with respect to dissipation.
We find that the nonlinearity responsible for the emergence of the frequency combs also leads to its dephasing,
leading to broadening and ultimate disappearance of sharp spectral peaks. Our study explores the fundamental
question of the impact of quantum fluctuations for quantum systems which do not possess a stable fixed point in
the classical limit.

In superconducting quantum circuits, the Josephson junc-
tion (JJ) is a lossless nonlinear element that provides criti-
cal functionality for various quantum information processing
tasks [1–3], from gate operations to readout and amplifica-
tion, made possible by controlling JJ dynamics via its embed-
ding circuit and effective drive. For instance, under strong
coupling and weak excitation (relative to the intrinsic nonlin-
earity), JJ-based artificial atoms have enabled Cavity QED
implementations [4–9] that have been extensively discussed
using open Jaynes-Cummings or Rabi models in single [10]
and multi-mode regimes [11]. However, applications employ-
ing JJs under strong excitation conditions, for readout [12–14]
and quantum-limited amplification [15–19], require an under-
standing of dynamical instabilities that sensitively depend on
the model of nonlinearity employed [20, 21].

Here we investigate the dynamics of a shunted JJ when ca-
pacitively coupled to a microwave-driven linear resonator. The
dynamics of such a system under strong driving have been theo-
retically [10, 22] and experimentally [12] studied in the context
of a high-power read-out scheme, and are found to exhibit a
bistability between two states with distinct phase and ampli-
tude. In the adiabatic regime where mode coupling is weaker
than losses, the coupled system maps to a single coherently-
driven Kerr oscillator with renormalized parameters, exhibiting
precisely this bistability [13, 23–25]. However, we find that
in the strong-coupling regime the nonlinear mode acquires a
retarded self-interaction mediated by the linear mode, which
changes the classical phase diagram dramatically: for certain
drive and detuning ranges the system may have no stable fixed
points, a phase not exhibited by the single coherently-driven
Kerr oscillator [26]. In this dynamical regime, nonzero fre-
quency instabilities emerge as limit cycles, yielding discrete,
equally spaced comb-like spectra in the frequency domain.

Such comb formation in coherently-driven microres-
onators [27–31] and incoherently-pumped mode-locked
lasers [32, 33] is often understood as an instability towards sym-
metric sideband growth via four-wave mixing, in an underlying
resonator geometry supporting multiple spatial modes [36, 37]

and a distributed nonlinearity (while exceptions have been
discussed as well [34, 35, 38]). Our results indicate that the
minimal manifestation of Kerr-mediated comb formation is
embodied in a Kerr-oscillator coupled to a linear oscillator.

While limit cycles [39, 40] and their modification under
classical noise [38, 41] have been extensively studied in clas-
sical systems, they are far less explored in the deep quantum
regime [42, 43] accessible to the lumped element JJ circuit
discussed here. Using Master equation and phase-space sim-
ulations, we investigate the fate of comb-like spectra as the
nonlinearity is tuned from weak to strong (equivalently, high
to low mode occupation at the instability threshold), so that the
system moves from an expected semiclassical regime towards
a well-defined quantum regime where a single photon can in
principle trigger the comb instability. We find that while the
nonlinearity, together with strong enough coupling to the linear
mode, is necessary for limit cycles to emerge, this very nonlin-
earity introduces quantum noise that dephases the limit cycle;
for weak noise, the dephasing time typically scales inversely
with the strength of the nonlinearity.

Model - The model we study is realizable in lumped element
setups [Fig. 1 (c)], as well as JJ-embedded transmission-line
resonators [44]. We assume that the nonlinearity of the junction
can be approximated by its lowest order Kerr nonlinearity. The
resulting model described by the Hamiltonian Ĥ = Ĥa +
Ĥb + Ĥg + Ĥd (See SM [45]) then is generic, consisting of a
driven linear oscillator a (frequency ωa) coupled to a nonlinear
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Figure 1. (a) Schematic representation of the two-mode system. (b)
Mode and drive frequencies. (c) Lumped element circuit QED imple-
mentation of (a).
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oscillator b (frequency ωb) [Fig. 1 (a)]. Ĥd = η(â + â†)
describes the drive (strength η) in the frame rotating at the drive
frequency ωd. The corresponding drive frame Hamiltonians of
the modes are Ĥa = −∆daâ

†â and Ĥb = −∆dbb̂
†b̂− Λ

2 b̂
†b̂†b̂b̂

respectively, with Λ > 0 being the strength of the nonlinearity,
and the frequency detunings defined as ∆da/db = ωd − ωa/b.
The two oscillators are coupled linearly, with Hamiltonian
Ĥg = g(â†b̂+ b̂†â). The system dynamics including damping
for both the linear (rate κ) and nonlinear mode (rate γ) are then
governed by the Master equation ˙̂ρ = −i [H, ρ̂] + κD[â]ρ̂ +

γD[b̂]ρ̂, where D[ô] is the standard dissipative superoperator
D[ô]ρ = ôρô† − 1

2

{
ô†ô, ρ

}
.

We begin with the classical dynamics of the two-mode sys-
tem, obtaining operator equations of motion and making the
replacement (〈â〉, 〈b̂〉)→ (α, β). This yields:

α̇ = i∆daα−
κ

2
α−igβ−iη; β̇ = i∆dbβ−

γ

2
β+iΛ|β|2β−igα

(1)
Note that Eqs. (1) are invariant if Λ → Λ/c and (α, β, η) →√
c(α, β, η), for c ∈ R+ [45]. Physically, scaling Λ → Λ/c

and η →
√
cη yields the same classical dynamics, except with

mode amplitudes scaled by
√
c. This simple Λ-dependence

is not true of the quantum dynamics, as we shall see later.
Next, the linearity of mode â and the coupling allows it to
be integrated out exactly, leading to an effective dynamical
equation for the nonlinear mode:

β̇ = i∆dbβ −
γ

2
β + iΛ|β|2β + gχaη

[
e(i∆da−κ2 )t − 1

]
− g2

∫ t

0

dτ F (τ)β(t− τ), (2)

where the linear mode susceptibility χ−1
a = −i∆da+κ/2. The

first line is the classical equation of motion for a coherently-
driven Kerr oscillator; the drive term is ∝ gχa since the linear
mode is driven. More interesting is the term in the second line,
which describes the delayed self-interaction of the nonlinear
mode - mediated by the linear mode - with a memory kernel
F (τ) = e(i∆da−κ2 )τ .

When F (τ) decays rapidly relative to the timescale of sys-
tem dynamics (κ� g), we may set β(t− τ) ≈ β(t) within a
Markov approximation; this is also equivalent to adiabatically
eliminating the linear mode (α̇ ≈ 0). We then obtain an effec-
tive Markov regime equation for the (long-time) dynamics of
the nonlinear mode:

β̇ = i∆̃dbβ −
γ̃

2
β + iΛ|β|2β − η̃ (3)

This is the classical dynamical equation for a renormal-
ized Kerr oscillator, with modified detuning ∆̃db = ωd −(
ωb + g2∆da|χa|2

)
, damping γ̃ = γ + g2κ|χa|2 and drive

η̃ = gχaη. Therefore, when the linear mode can be adia-
batically eliminated, the two-mode system behaves like an
effective Kerr oscillator [46].

From here, the classical fixed points
(
ᾱ, β̄

)
of the two-mode

system are found by setting α̇ = β̇ = 0, or equivalently set-
ting β̇ = 0 in the Markov regime equation, Eq. (3). The

equation relating the fixed points |β̄|2 to the drive strength
|η|2 is found to be the standard cubic polynomial for a Kerr
oscillator, with the modified parameters defined earlier [45].
The relationship is single-valued for ∆db > ∆MP

db but be-
comes multivalued for ∆db < ∆MP

db , defining a region of
multiple fixed points; here the critical detuning ∆MP

db =

−
√

3
2

(
γ + g2κ|χa|2

)
+ g2∆da|χa|2 [45]. Dropping terms

∝ g2 arising from the linear mode yields the standard result
for a single driven Kerr oscillator.

Stability analysis - To treat the memory term exactly we
perform a Laplace domain linear stability analysis around the
above fixed points; details can be found in [45]. Instability is
determined by the dominant pole (pole with largest real part) of
the linearized dynamical matrix. For a resonantly driven linear
mode, ∆da = 0, an analysis of the real and imaginary parts of
the poles separately allows the phase diagram to be mapped out
entirely analytically; we focus on this case from here on (for
non-zero ∆da, see SM [45]). Two distinct parameter regimes
are obtained, determined by the relative strength of g and κ.

For g < κ/2, the typical phase diagram in η-∆db space is
shown in Fig. 2 (a). For ∆db > ∆MP

db , the system has only
one fixed point (FP), as discussed earlier; the stability analysis
indicates that this FP is always stable. For ∆db < ∆MP

db , the
orange hatched region emerges where one of the system’s FPs
is unstable, and the unstable pole s has Im s = 0. In this region,
the typical curve relating |β̄|2 to η (S-curve) is shown in the
inset, with green (purple) segments showing unstable (stable)
FPs. The unstable FPs coincide exactly with the region of 3
total FPs; dynamically, instabilities from the unstable branch
settle into one of the two stable fixed points at the same drive
strength. This is precisely the stability diagram of the modified
Kerr oscillator defined by Eq. (3).

Much more interesting is the case g > κ/2, for which
the phase diagram is shown in Fig. 2 (b). We first consider
∆db > ∆MP

db , where the classical equations admit only 1
FP. We find that for ∆db above a minimum critical detun-
ing ∆LC

db = −
√

3
2 (γ + κ), the single fixed point that exists

is never unstable (region 1). For ∆MP
db < ∆db < ∆LC

db (re-
gion 2), this is no longer the case. A typical |β̄|2-η plot in
region 2, Fig. 2 (c), shows emergent unstable |β̄|2 values in
green, where the system has only one, unstable FP, hinting
at the emergence of limit cycle solutions; this regime is not
possible for the single coherently-driven Kerr oscillator. The
minimum and maximum unstable |β̄|2 values occur at drive
strengths η− (open square) and η+ (filled circle) respectively.
At these drives, the dominant pole reaches the threshold of
instability, now with nonzero Im s = ±

√
g2 − κ2/4 ≡ ±Ω.

Note that for η > η+ and η < η−, the system always has
at least one stable fixed point (lying on one of the upward
pointing purple segments). Also, in region 2, the unstable
green segments lie entirely in the drive range η− < η < η+.
However, with more negative detuning, the latter does not
remain so. For ∆db < ∆MP

db (regions 3, 4), the S-curve can
be multivalued, as seen in Fig. 2 (d), and eventually further
deforms to Fig. 2 (e), where unstable |β̄|2 are not all contained
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Figure 2. Phase diagram in η-∆db space. The possible phases are
listed in the top-left table. (a) Phase diagram for g < κ

2
(here, g = κ

4
).

(b) Phase diagram for g > κ
2

(here, g = 2κ). (c) through (f) Plots
of |β̄|2 against η showing the change in the S-curve as ∆db is swept
across the four dynamical regions in (b). Green (purple) segments of
the S-curve depict unstable (stable) |β̄|2 values.

in the range η− < η < η+. Here, for η > η+ and η < η−
the system now admits 3 FPs, of which only one is stable
(checkered purple). On the other hand, within the range η− <
η < η+ (shaded green as before), all three fixed points are
unstable. This is clearly seen in Fig. 2 (e): only green segments
of the S-curve lie in the green shaded region.

Furthermore, the range η− < η < η+ is detuning de-
pendent; as ∆db becomes more negative, this region shrinks,
and vanishes when η− = η+. We mark this as the termi-
nal boundary of region 3, which occurs at a critical detun-

ing ∆crit
db = −

√
(∆MP

db )2 + 1
2

[
(∆MP

db )2 − (∆LC
db )2

]
[dashed

orange line in Fig. 2 (b)].
For ∆db < ∆crit

db , region 4 begins, where η− > η+. The
S-curve typically looks like Fig. 2 (f). Since at least one stable
fixed point always exists for η > η+ and η < η−, and since
η− > η+ in region 4, we easily conclude that at least one stable
fixed point (SFP) now exists for all driving strengths. The
green shaded region with 0 SFPs thus gives way to the orange
hatched region with 3 FPs, 2 SFPs. We note that unlike ∆LC

db ,
which is a strict minimal detuning for instability, ∆crit

db is not a
strict maximal detuning. Beyond ∆crit

db , limit cycle solutions
can ostensibly still emerge, since unstable fixed points with
nonzero Im s still exist. However, if excursions from these
unstable fixed points are large enough, the system can always
find a stable fixed point to settle into in this region.

Finally, as g → κ/2, ∆crit
db ,∆

MP
db ,∆

LC
db all become equal;

both green and purple regions shrink and eventually vanish,
such that for g < κ/2, only the orange hatched region persists,
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Figure 3. Numerically simulated phase diagram in η-∆db space for
g = 2κ > κ

2
. Surface plot shows spectral spacing ∆ω obtained from

Sα[ω]; the ‘island’ of multifrequency solutions overlaps perfectly
with the analytically-predicted unstable region below (shaded green).
Plots (a) through (c) show Sα[ω] at the correspondingly labelled
points on the phase diagram.

and we recover the phase diagram in Fig. 2 (a).
Dynamics in the unstable region can be studied numeri-

cally by simulating Eqs. (1). We calculate the steady state
power spectrum of the linear mode, Sα[ω] = |F {α(t)} |2,
where F {α(τ)} =

∫∞
−∞ dτ e−iωτα(τ) is the Fourier trans-

form. This quantity is of particular relevance for circuit QED
realizations of our model, where Sα[ω] is the power spectrum
of the resonator mode, which can be directly monitored in
experiments [47]. For each spectrum Sα[ω], the frequency
spacing ∆ω is plotted in η-∆db space in Fig. 3, scaled by Ω.
We find multifrequency limit cycles in a region that has ex-
cellent agreement with the (green shaded) analytic region of
0 SFPs. The spacing ∆ω is close to Ω for ∆db ∼ ∆LC

db , but
decreases as ∆db becomes more negative; this reduction is
observed for general parameters in this system (see additional
phase diagrams included in [45]).

Quantum regime - To study the modification of limit cy-
cle dynamics in the quantum regime, we employ both Mas-
ter equation simulations and a stochastic approach based on
the positive-P representation of the density matrix ρ [48].
The latter allows access to normal-ordered operator aver-
ages and correlation functions via a set of stochastic differ-
ential equations (SDEs) for the independent complex variables
~α ≡ (α, α†, β, β†):

d~α = ~A dt+
√

Λ B ~dW (4)

The drift vector ~A describes deterministic classical evolution,
equivalent to Eqs. (1). Then, by construction, any quantum
effects must appear as stochastic ‘noise’ terms, involving the
vector of independent Wiener increments ~dW . The scale and
nature of this noise is set by the matrix B. In the absence of
thermal noise (which we neglect), B =

√
i diag

(
0, 0, β, iβ†

)
is purely quantum in origin, and depends on β, β† (as opposed
to being constant for thermal noise). Eqs. (4) are thus driven
by multiplicative noise. Crucially, the classical and quantum
contributions depend differently on the nonlinearity. Scal-
ing Λ → Λ/c and (~α, η) →

√
c(~α, η) in Eqs. (4) leaves the
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Figure 4. |Sa[ω]|, logscale, (a) within, and (b) outside the limit cycle region, as a function of increasing nonlinearity Λ from left to right. Master
equation (ME), SDE simulations (PP), and stable regime linearized spectra (Lin.) are shown.

classical drift term unchanged as discussed earlier, but scales
the stochastic term by a 1√

c
factor [45]. Hence decreasing Λ

(c > 1; equivalently, increasing mode occupation) suppresses
the relative impact of quantum dynamics, moving the system
closer to effectively classical evolution.

By varying Λ and η according to the above scaling, we
can stay on fixed positions on the classical phase diagram
(a) just within the limit cycle region, and (b) just outside
[See Fig. 4], while modifying the stochastic dynamics. For
regimes of weak nonlinearity relative to the damping rates,
Λ ∼ [0.001, 0.1]γ, κ, we find that Eqs. (4) may be simulated
controllably; here, modal occupations of O([102, 103]) make
Master equation and even Monte Carlo simulations unfea-
sible. For stronger nonlinearities Λ & γ, P representation
SDE simulations run into notorious difficulties [49, 50]; how-
ever, weaker excitation numbers then render density matrix
simulations tractable again [51]. Combining the two meth-
ods yields a complete picture of dynamics as the nonlinearity
is increased to the quantum regime. The precise scaling of
stochastic terms with nonlinearity does depend on the nonlin-
ear model employed [43, 52, 53]; more generally, our analysis
may be regarded as a study of dynamics under transition from
high to low modal occupations. We analyze again the linear
mode power spectrum, using the Wiener-Khinchin theorem:
Sa[ω] =

∫∞
−∞ dτ e−iωτ 〈â†(τ)â(0)〉. For SDE simulations,

the required correlation function is determined via averaging,
〈â†(τ)â(0)〉 = limt→∞

1
Ns

∑Ns
i=1 α

†
i (t + τ)αi(t), summing

over at least Ns = 105 trajectories for each calculation.
Within the limit cycle region [Fig. 4 (a)], for the weakest

nonlinearity Λ = 0.001γ, the spectrum appears close to the
classical result [Fig. 3 (c)]. However, as the nonlinearity be-
comes stronger, the peaks in the discrete spectrum broaden.

A weak-noise phase dynamics analysis [45] indicates a phase
diffusion time ∝ 1/Λ (equivalently, comb peak linewidths
∝ Λ), with a proportionality coefficient of order one deter-
mined by local properties of the limit cycle attractor. Outside
the unstable region [Fig. 4 (b)], the classical FP with mode
occupations (|ᾱ|2, |β̄|2) is stable. Fluctuations around this FP
yield a quantum spectrum that we determine analytically [45]
using a linearized analysis [46, 48, 54]; the result agrees well
with Sa[ω] for weak nonlinearities, but deviates as Λ increases
and the fluctuations are no longer small relative to (|ᾱ|2, |β̄|2).
For intermediate Λ = 0.1γ, we are able to compare SDE and
Master equation simulations in both regions, finding very good
agreement.

Conclusion - The driven, strongly-coupled nonlinear system
of a Kerr oscillator and a linear mode admits a phase with no
classical SFPs. Here, classical dynamics feature limit cycles
with sharp peaks in the mode spectra; however, the quantum
dynamics introduce dephasing due to the very nonlinearity that
gives birth to the limit cycles, broadening and ultimately wash-
ing out these spectral peaks as Λ increases, even if all other
noise sources are absent. Our study is relevant for on-chip
microwave domain frequency comb generation using quan-
tum circuits with weak nonlinearities (realized in recent circuit
QED experiments [18, 55, 56]), and for further understand-
ing stable operating regimes of JJ-based nonlinear multimode
circuit QED systems.
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