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We present models of realistic globular clusters with post-Newtonian dynamics for black holes.
By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and
during three- and four-body encounters, we find that nearly half of all binary black hole mergers
occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccen-
tricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes
with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be
retained in the cluster and merge again. As a result, globular clusters can produce merging binaries
with detectable spins regardless of the birth spins of black holes formed from massive stars. These
second-generation black holes would also populate any upper mass gap created by pair-instability
supernovae.

I. INTRODUCTION

With the recent detections of five binary black hole
(BBH) mergers, and one binary neutron star merger,
the era of gravitational wave (GW) astrophysics has ar-
rived at last [1–5]. Despite significant theoretical work,
the origins of these systems, particularly the heavier
BBHs, remain an open question. Both stellar evolution
in isolated massive binaries [e.g. 6–10] and dynamical
formation in dense star clusters [e.g. 11–22] have been
shown to produce merging BBHs similar to GW150914
[23, 24]. Understanding which formation pathways are
at play will be critical for the interpretation of GW data.
While many signatures of dynamical assembly have been
proposed, such as highly-eccentric mergers occurring in
strong chaotic encounters [25] or anti-alignment of the
BH spins with the orbit [26], none of the BBH merg-
ers detected so far by LIGO/Virgo have displayed any of
those signatures clearly [see 27].

What has been displayed clearly in each BBH merger
is the birth of a new rapidly-spinning BH with a mass (al-
most) equal to the sum of its progenitor masses. Many of
these new BHs, particularly the remnants of GW150914,
GW170104, and GW170814, are significantly more mas-
sive than what is thought to form during the collapse of
a single star, where the pair-instability mechanism lim-
its the remnant BH mass to . 50M� [28]. Were one
of these mergers to occur in a dense star cluster, how-
ever, the merger product could easily exchange into an-
other BBH and merge again. Because of the distinct BH
masses and spins in such second-generation (2G) merg-
ers, it has been suggested that such a population could
be easily identifiable with future LIGO/Virgo detections

[29, 30].
In this letter, we present the first models of realistic

globular clusters (GCs) with fully post-Newtonian (pN)
stellar dynamics. While relativistic N -body dynamics
has been studied previously for highly idealized systems
[e.g., 31–40] or open clusters [e.g., 22], we show here
for the first time using self-consistent dynamical models
of massive GCs that pN effects play a key role in as-
sembling dynamically the merging BBHs detectable by
LIGO/Virgo. In our new pN models, we observe that
roughly half of all BBH mergers occur inside clusters,
with a significant fraction of those (∼ 10%) merging
with eccentricities greater than 0.1 following GW cap-
tures. In-cluster mergers produce a second generation of
BHs that, if not ejected from the cluster through GW re-
coil, will dynamically exchange into new binaries only to
merge again. These 2G BBH mergers have components
with large spins and masses significantly beyond what is
possible from the collapse of a single star; they may be
quite common, with as many as ∼20% of BBH mergers
from our models having components formed in a previous
merger.

Throughout this paper, we assume a flat ΛCDM cos-
mology with h = 0.679 and ΩM = 0.3065 [41].

II. POST-NEWTONIAN DYNAMICS

We have computed the new GC models presented here
using the Cluster Monte Carlo (CMC) code. CMC has
been developed over many years [42, 43], and includes all
the necessary physics for the long-term evolution of GCs,
including two-body relaxation [44, 45], single and binary
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stellar evolution [46–48], galactic tides, three-body bi-
nary formation [49], and three- and four-body gravita-
tional encounters via the fewbody package [50, 51]. We
have shown in [52] that CMC can reproduce with a high
degree of fidelity both the global cluster properties and
BBH distributions computed with state-of-the-art direct
N -body simulations [53], while at the same time being
at least two orders of magnitude faster (essential for the
sort of extensive parameter-space study presented here).
Furthermore, CMC has been upgraded [21] to employ
the most recent prescriptions for stellar-wind-driven mass
loss [54, 55] and compact-object formation [56], allowing
us to compare our results directly to those of population
synthesis studies for isolated binaries [e.g. 23].

To incorporate pN effects into CMC, we make the fol-
lowing modifications. We account for relativistic effects
during three- and four-body encounters by adopting a
modified version of the fewbody code with pN acceler-
ations up to and including the 2.5pN order. This code
has been described in detail in [27, 57] and has been
shown to conserve energy to 2pN order and to reproduce
the inspiral times for compact binaries [58]. For BBHs
which merge during an encounter, we perform a standard
sticky-sphere merger, using detailed, spin-dependent fit-
ting formulas from analytic and numerical relativity cal-
culations [59–71]. The new masses, spins, and recoil
kicks are applied immediately during any merger, al-
lowing us to model the retention of BHs by the cluster
self-consistently. See Supplemental Materials A for de-
tails, which includes references [72–77] . We initially as-
sume all BHs from stellar collapse have no spins at birth
(χb = 0, where χ is the dimensionless Kerr spin parame-
ter), though we relax this assumption in Section V. For
BBHs which do not merge during a fewbody encounter,
we directly integrate the orbit-averaged Peters equations
[58] for the change in semi-major axis and eccentricity
due to GW emission. This represents a departure from
our previous work where we relied on the binary stellar
evolution module [BSE, 47]. By default, BSE only ap-
plies GW energy loss to binaries with a < 10R�. This
assumption leads BSE to significantly underestimate the
number of GW-driven mergers for binaries in a typical
cluster, which can be highly eccentric and very massive.
When accounting for GW energy loss in eccentric bina-
ries, the number of in-cluster mergers becomes compara-
ble to the number of merging binaries that are ejected
from the cluster. This is a significant improvement over
previous results in the literature [e.g., 15, 20, 21, 24, 78],
where ejected BBHs dominated the merger rate in the
local universe. Semi-analytic approaches to cluster dy-
namics [e.g., 79, 80] have reported significantly higher
fractions of in-cluster mergers, similar to those presented
here, and have noted the possibility of multiple mergers
in galactic nuclei [79].

We generate 24 GC models covering a range of masses,
metallicities, galactocentric distances, and virial radii,
similar to those observed in the Milky Way and beyond.
These initial conditions are identical to those from [21],

allowing us to explicitly compare our pN results to those
in the literature. Our physics for single and binary stel-
lar evolution is nearly identical to [21]. We have added
a prescription for stellar mass loss via pulsational-pair-
instability supernovae and stellar destruction via pair-
instability supernovae. This physics, powered by the
rapid production of electron-positron pairs in the stel-
lar core [28], places a well-understood upper limit on the
masses of BHs that can from from the collapse of a sin-
gle star. We take the limit from [81] of ∼ 45M� which is
reduced to ∼ 40M� via neutrino emission. See Supple-
mental Materials B for details, which includes references
[82–84]. This limit is in tentative agreement with the BH
mass distribution measured by LIGO/Virgo [85]. In our
simulations, no BH can be born with a mass above 40M�
unless the BH or its stellar progenitor has undergone a
dynamical merger or mass transfer. Finally, unlike previ-
ous studies [20, 21, 24], we have not weighted our models
according to the distribution of observed GCs. We will
explore more realistic sets of models in future work fo-
cusing specifically on LIGO/Virgo detection rates. In
practice a more realistic weighting should make little dif-
ference, as our previously adopted weighting scheme pri-
marily selected BBHs from the most massive clusters,
which also contribute the majority of sources in our cur-
rent grid.

III. IN-CLUSTER MERGERS

With the addition of the pN physics, we see a sig-
nificant increase in the number of in-cluster mergers.
Whereas before the number of in-cluster mergers was a
minor correction to the BBH mergers in the local uni-
verse [0.06% of mergers at z < 1, see 21], we now find
that nearly half of mergers now occur inside the clus-
ter. For the 24 models considered here we find a total
of 2819 mergers, 55% of which occur in the cluster. At
low redshifts (z < 1), this number decreases to 45%,
as the primordial binaries which merged at early times
after a common-envelope phase have merged many Gyr
ago. Compared to similar models without pN physics
[21], the number of ejected BBH mergers at z < 1 de-
creases by ∼ 20% (496 versus 410). However, the num-
ber of in-cluster mergers has jumped significantly, from
one to 338. This increases the total number of mergers
(in-cluster and ejected) by ∼ 50%.

This increase in the number of BBH mergers occurring
in the cluster primarily arises from properly accounting
for GW emission for binaries regardless of their semi-
major axis. For example, a typical 30M� + 30M� BBH
is ejected from a GC with a ∼ 0.4 AU (roughly 10 times
greater than the a < 10R� cutoff in BSE) after under-
going O(10) dynamical encounters [24]. During a typi-
cal encounter, the BBH semi-major axis will character-
istically shrink while the orbital eccentricity randomly
drawn from the thermal distribution, p(e)de = 2e de [86].
These “hardening” encounters continue, shrinking the bi-
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FIG. 1. The eccentricities of BBHs from the 24 GC mod-
els that merge at low redshifts. We calculate the eccentric-
ity when the BBH enters the LIGO/Virgo detection band
at a (circular) GW frequency of 10Hz. The distribution is
clearly trimodal: the first peak corresponds to BBHs which
merger after ejection from the cluster [similar to 21, Figure
10]. The second peak corresponds to BBH mergers which oc-
cur in the cluster. The final peak, at e > 0.1, corresponds
to in-cluster mergers which occur during a strong encounter,
when the BBH enters the LIGO/Virgo band during a GW
capture. Note that the two distributions are normalized to
the total number of mergers (in-cluster and ejected).

nary’s semi-major axis until either the BBH is ejected
from the cluster by the third body or until GWs drive
the binary to merger. The timescale for each BBH to
merge can be roughly approximated by [58]:

tGW ∼
e

|de/dt|

∼400 Gyr
( a

0.4AU

)4
(

mBH

30M�

)−3

(1− e2)7/2 (1)

As (1) makes clear, a large eccentricity can significantly
decrease the merger timescale. For e & 0.95 (roughly
%10 post-encounter binaries) tGW will decrease by more
than 103, leading the BBH to promptly merge in the clus-
ter. On the other hand, for BBHs that never reach a high
eccentricity, these encounters will continue to harden the
binary until it is ejected from the cluster (where its ec-
centricity at ejection is set by a single draw from the
thermal distribution). Because the (1 − e2)7/2 depen-
dence in (1) preferentially selects in-cluster mergers from
a super-thermal distribution, we expect these mergers to
have larger eccentricities than their ejected counterparts
by the time they reach the LIGO/Virgo band.

In Figure 1, we show the eccentricity distribution of
merging binaries as they enter the LIGO/Virgo band

(which we define as a circular GW frequency of 10Hz).
We see the expected separation in eccentricity between
BBHs which merge in the cluster and those that merge
after being ejected from the cluster. For the in-cluster
mergers, we also find a clear bimodality, with the lower
peak corresponding to isolated binaries that merge after
a dynamical encounter and the higher peak (e > 0.1) cor-
responding to sources which merge during the encounter
via GW capture. Although previous work [25, 27, 87] has
shown through scattering experiments that such mergers
are to be expected at the 1% level, this is the first work
to show that these mergers occur in realistic GC envi-
ronments. From our combined 24 models, we find that
about 10% of the in-cluster mergers (∼ 3% of all merg-
ers) at z < 1 occur during these GW captures, in good
agreement with analytic work [88].

IV. MERGERS OVER COSMIC TIME

In Figure 2, we show the mergers of BBHs as a function
of cosmological redshift. What is immediately striking is
that the mass distributions for in-cluster and ejected bi-
naries are significantly different at low redshifts. This
arises from the delay times between formation and merg-
ers for ejected BBHs. When a BBH is ejected from the
cluster, it may still take several Gyr to merge in the field
[see e.g., 89, and references therein]. Even for the most
massive clusters, the median inspiral time for ejected
binaries is ∼ 10Gyr [e.g., 21, Figure 1]. In effect, the
ejected BBHs which merge today drew their components
from the initial distribution of BH masses in the clus-
ter, where the masses varied from 5M� to 40M�. On
the other hand, the in-cluster mergers have effectively
no delay time, and their components are drawn from the
present-day distribution of BH masses in the cluster. Be-
cause old GCs have ejected their most-massive BHs many
Gyrs ago [90], the BBHs merging in the cluster today are
typically lower-mass than those that were ejected many
Gyr ago.

Another interesting feature of Figure 2 is the presence
of BBH mergers in the upper-mass gap, beyond the mass
limit imposed by pair-instability supernovae. The in-
creased number of in-cluster mergers allows the GCs to
produce significant numbers of 2G BBH mergers, some of
which will have components above the maximum mass for
BHs born from a single stellar collapse. As these systems
can only be produced through multiple mergers, they will
immediately be identifiable as having arisen from a dy-
namical environment. The rate of such mergers is small,
but LIGO/Virgo is more sensitive to mergers with more
massive components [the detection horizon scales with
the mass of the more massive component as m2.2, 85].
At the expected sensitivity for Advanced LIGO’s third
observing run [91], a BBH with component masses of
40M� + 80M� could be detected out to z ∼ 1, encom-
passing a comoving volume of space three times larger
than was observed during LIGO’s second science run [92].
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FIG. 2. The total mass of merging BBHs from all 24 GC models. On the left, we show all mergers as a function of redshift,
with the orange diamonds and blue points showing in-cluster and ejected mergers, respectively. The black circles show 2G
mergers (both in-cluster and ejected) which have at least one component that was formed from a previous BBH merger. The
right panel shows the mass distribution of these mergers at low redshifts (z < 1). As the spins are increased from χb = 0 to
χb = 0.4, the number of 2G mergers decreases significantly, as their progenitors were less likely to be retained in the cluster.
See the discussion in Section V. The red-dashed line indicates the maximum mass of first-generation BBHs (∼ 81M�) with
our assumed pair-instability supernova limit. The handful of first-generation BBHs which merge above this are the result of
either stable mass transfer or stellar collisions prior to BH formation.

V. BLACK HOLE SPIN AND RECOIL KICKS

As a conservative assumption, we have assumed that
all BHs in the cluster are born with no intrinsic spin. This
is consistent with all but one [GW151226, 5] of the BBHs
detected by LIGO/Virgo so far. However, the presence
of high BH spins, suggested by observations of BH X-ray
binaries [see 93, for a review], can radically change the
results presented here: depending on the spin magnitudes
and orientations, merging BBHs can get kicks as high
as 5000 km/s [e.g., 63, 70, 94], significantly larger than
the escape speed of a typical GC. As a result, the 2G
mergers shown in the left-hand panel of Figure 2 would
not have formed if BHs are born with large spins, since
their components would not have been retained in the
cluster [14].

We can estimate how the numbers in Figure 2 would
have changed under different assumptions for BH birth
spins. For each repeated merger, we calculate the prob-
ability that each of the components would have been re-
tained in the cluster given different birth spins. This is
done by computing the recoil kicks over 1000 realizations
of the spin orientations at merger. The probability of re-
taining each progenitor is simply the fraction of mergers
for which the recoil speed is smaller than the cluster es-
cape speed where the merger occurred. For each 2G BBH
merger, we take the product of the retention probabilities
for each component as the probability of that 2G merger
occurring. We show the retention of these BBHs in the
right panel of Figure 2 by weighting each 2G BBH merger
by its retention probability. As expected, the number of
2G BBH mergers decreases as the birth spins of the BHs

are increased. When χb = 0, we find that ∼20% of merg-
ers at z < 1 are 2G mergers. As the spins are increased,
this number decreases, and once χb = 0.4, we observe
O(1) 2G mergers, compared to the 672 first-generation
mergers which occur at z < 1.

These assumption have significant implications for the
measurable spins of BBH mergers. As shown by numer-
ical relativity [64, 95, 96] and idealized pN N -body sim-
ulations with spins [40], repeated mergers of BBHs in
clusters with near-equal masses will tend to produce BHs
with χ ∼ 0.7, (assuming the initial spins are isotropically
distributed [97]). But what LIGO/Virgo is most sensitive
to is not the spin magnitudes of the BBHs components
[98, 99], but the effective spin of the BBH, defined as
the mass-weighted projection of the two spins onto the
orbital angular momentum:

χeff ≡
[
m1 ~χ1 +m2 ~χ2

m1 +m2

]
· L̂, (2)

where L̂ is the direction of the orbital angular momen-
tum and ~χ1,2 are the dimensionless-spin vectors for the
BHs. For dynamically-formed binaries, the isotropic dis-
tribution of the orbit and spin vectors means that (2)
will be peaked at χeff = 0 with symmetric tails whose
extent depends on the BH spin magnitudes. We show
the distributions of χeff in Figure 3. When the initial
BH spins are low, the 2G systems are the only BBHs
which merge with observably large spins. The fraction of
systems with large spins increases as a function of total
mass, since these larger systems (particularly those be-
yond the pulsational-pair instability limit) are predom-
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FIG. 3. The distributions of χeff from BBHs that merge at
z < 1, divided into bins of 15M�. Each bin shows the median
(white line), 50th, 90th, and 99th percentiles of χeff for all BBH
mergers with that mass. For each binary, we average over
N = 103 random spin orientations. For the 2G mergers, we
use N = 103 times the probability of each component having
been retained in the cluster following its earlier mergers (see
discussion in Section V). As the birth spins (χb) of the BHs
are increased, the fraction of 2G BBHs retained in the cluster
decreases; however, the overall magnitudes of χeff increases,
as the first generation of BBHs begin to produce mergers with
measurable spins. Note that while the large spin magnitudes
for BBHs with total masses above 80M� does not depend on
the birth spins, the number of mergers in that mass range
decreases sharply with increasing χb (see Figure 2).

inantly formed through repeated mergers. As the birth
spins are increased, the number of 2G mergers (with their
characteristically large spins) decreases as their compo-
nents are more likely to be ejected from the cluster dur-
ing their first merger. But the total number of BBH
systems with non-zero χeff increases, as the first gen-
eration of BHs will now form mergers with observable
spins. This result is key: one of the most promising

ways for identifying a dynamically-formed BBH merger
is by the alignment of the spins, with anti-aligned systems
(χeff < 0) being a clear indicator of dynamical formation
[26]. These results indicate that dynamical assembly in
dense star clusters will inevitability produce a merger
with χeff < 0, regardless of the BH birth spins.

VI. CONCLUSION

We have shown that the inclusion of pN effects can
have significant implications for BBH mergers from dense
star clusters detectable by LIGO/Virgo. By accounting
for GW emission from isolated binaries and during three-
and four-body dynamical encounters, we find that a sig-
nificant number of mergers occur in the cluster, and that
about 3% of all mergers (and ∼ 10% of in-cluster merg-
ers) in our models will enter the LIGO/Virgo detection
band with high residual eccentricity (e > 0.1). Because of
this, GCs can potentially produce a significant number of
2G BBH mergers with detectable spins and with masses
larger than those produced through the collapse of sin-
gle stars. Dynamics in dense star clusters can therefore
produce BBH mergers with anti-aligned spins (a clear
indicator of a dynamical origin) regardless of the initial
spins of first-generation BHs: if natal BH spins are large,
then GCs can produce BBH mergers with χeff < 0 from
first-generation systems. If the spins are initially small
[as predicted by e.g., 27], then the BBH merger products
can often be retained in the cluster, forming a second
generation of BBHs with large spins (χ ∼ 0.7).
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view D 76, 064034 (2007).

[63] M. Campanelli, C. Lousto, Y. Zlochower, and D. Merritt,
The Astrophysical Journal 659, L5 (2007).

[64] W. Tichy and P. Marronetti, Physical Review D 78,
081501 (2008).

[65] E. Barausse and L. Rezzolla, The Astrophysical Journal
704, L40 (2009).

[66] A. Buonanno, L. E. Kidder, and L. Lehner, Physical Re-
view D 77, 026004 (2008).

[67] L. Rezzolla, E. Barausse, E. N. Dorband, D. Pollney,
C. Reisswig, J. Seiler, and S. Husa, Physical Review D
78, 044002 (2008).
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