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Quantum computation places very stringent demands on gate fidelities, and experimental imple-
mentations require both the controls and the resultant dynamics to conform to hardware-specific
constraints. Superconducting qubits present the additional requirement that pulses must have simple
parameterizations, so they can be further calibrated in the experiment, to compensate for uncer-
tainties in system parameters. Other quantum technologies, such as sensing, require extremely high
fidelities. We present a novel, conceptually simple and easy-to-implement gradient-based optimal
control technique named Gradient Optimization of Analytic conTrols (GOAT), which satisfies all the
above requirements, unlike previous approaches. To demonstrate the algorithm’s capabilities, with
emphasis on flexibility and ease of subsequent calibration, we optimize fast coherence-limited pulses
for two leading superconducting qubits architectures - flux-tunable transmons and fixed-frequency
transmons with tunable couplers.

Introduction. The ability to drive a quantum system
to a desired target in a fast and efficient manner is at
the heart of emerging quantum technologies [1]. Finding
the optimal control pulse to drive the quantum system
to a desired state or to generate a desired gate has been
the subject of extensive research since the first applica-
tions of Quantum Optimal Control [2–5] (QOC). QOC
has been applied experimentally to photochemical reac-
tions [6], where progress continues to this day [7]. It has
also been applied to nuclear magnetic resonance [3, 8, 9],
with applications in medical imaging and spectroscopy.
New experimental methods to control quantum systems
have led to increased interest in QOC, which has been ap-
plied to processes as diverse as high harmonic generation
[10], control of energy flow in biomolecules [11], attosec-
ond physics [12] and quantum computing [13, 14]. Super-
conducting qubits raise additional challenges to QOC, as
fabrication variability implies pulses are often optimized
in simulation using a somewhat inaccurate model of the
system. To achieve high fidelity for such mischaracterized
systems, a second, in-situ optimization of pulse param-
eters is needed (also known as calibration or tune-up).
The latter requires simple functional forms of the pulses.

The paper is organized as follows: First, we present
criteria for an ideal QOC algorithm, with specific em-
phasis on unique needs of superconducting qubits. Sec-
ond, we formally define the optimal control task and
present a new and extremely simple QOC algorithm,
GOAT, which we believe is the first to simultaneously
satisfy all criteria. Third, we apply GOAT to supercon-
ducting qubit systems - the flux tunable coupler [15] and
frequency-tunable qubits [16], producing simple, realistic,
bandwidth-limited pulses, which implement coherence-
limited two-qubit gates, significantly shorter than has
currently been achieved in experiments.

Requirements of QOC. A practical QOC method ide-
ally meets the following three criteria:

(i) Flexibility. A QOC method must be flexible enough
to accurately model the experimental system, including

all control constraints, transfer functions, etc. Moreover,
it must be flexible enough to utilize any control ansatz,
so a simple control pulse which suits the system in ques-
tion can be found. Manufacturing solid-state qubits re-
sults in variations between samples and therefore Hamil-
tonians which are not known with the required preci-
sion (this is true to a lesser extent in most quantum
systems). To achieve highly accurate controls, a sec-
ond closed-loop in-experiment optimization is required,
to calibrate the drive shape parameters to the specific
sample [17, 18]. Therefore, a good QOC method pro-
duces pulses described by only a few parameters, so that
subsequent calibration is feasible. The calibration can
then be performed using methods such as Ad-HOC [19]
or ORBIT [20]. This is a reason for the popularity of
the DRAG method [21], a fully analytic method to de-
sign few-parameter pulses avoiding unwanted transitions.
Unfortunately, DRAG cannot be extended to arbitrary
constraints.

(ii) Numerical accuracy. A QOC method must be nu-
merically accurate. With technologies aimed at quan-
tum computation, one must achieve error rates below an
error-correction threshold [22–25]. Surface codes, for ex-
ample, [26] require gate infidelities of 10−4 to limit over-
head [27]. Ion trap architectures [28, 29] and quantum
circuits based on Josephson junctions, are approaching
this threshold [30]. Other applications, such as sensing
and metrology, require extremely high fidelities. A good
QOC method must not make any approximations which
degrade numerical accuracy, as this may lead to false fi-
delity estimates.

(iii) Speed As a practical tool, a good QOC method
should be fast, even when the number of parameters is
in the double-digits, and preferably easily parallelizable.
There are multiple factors affecting overall computation
effort. Primarily, the effort depends on the number of
iterations required to reach the desired fidelity, implying
that the search of parameter space must be gradient-
driven. In addition, several additional factors are of im-
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portance, such as the processing done at each iteration.
For example, when using piecewise-constant controls, the
effort scales linearly with the number of time slices and
can be very inefficient.
The QOC task. Assume a system whose dynamics is

described by a drift Hamiltonian H0 and a set of control
Hamiltonians Hk. The total Hamiltonian reads

H (ᾱ, t) = H0 +

C
∑

k=1

ck (ᾱ, t)Hk , (1)

where ck are the control functions, characterized by a set
of parameters ᾱ. For example, the controls may be a
superposition of Gaussian pulses,

ck (ᾱ, t) =

m
∑

j=1

Ak,j exp
(

−(t− τk,j)
2/σ2

k,j

)

, (2)

with

ᾱ = {Ak,j , τk,j , σk,j}k=1...C,j=1...m . (3)

The choice of control ansatz is governed by two consid-
erations: constraints and sparsity. The former relates to
the ease with which experimental control constraints can
be modeled by the ansatz (e.g. if the control is band-
width limited, a Fourier representation is natural). The
latter relates to producing pulses which are described by
only a few parameters (and therefore easily calibrated).
In the examples below we have found Fourier and Erf
parametrizations to low parameter counts pulses.
For our purpose, the goal function to minimize is de-

fined as the projective SU distance (infidelity) between
the desired gate, Ugoal, and the implemented gate, U (T ),
[31] (see also [32])

g (ᾱ) := 1− 1
dim(U)

∣

∣

∣Tr
(

U †
goalU (T )

)∣

∣

∣ , (4)

where U (t) is the time ordered (T) evolution operator

U (ᾱ, T ) = T exp

(

∫ T

0

− i

~
H (ᾱ, t) dt

)

. (5)

GOAT. We now present a novel QOC algorithm which
uniquely meets all criteria described above. GOAT’s abil-
ity to use any control ansatz makes it feasible to find
drive shapes described by a small number of parameters,
suitable for calibration.
A gradient-based optimal control algorithm requires

two ingredients: an efficient computation of ∂ᾱg (ᾱ) and
a gradient-based search method over parameter space.
GOAT presents a novel method for the former, while us-
ing any standard algorithm for the latter. Consider the
gradient of the goal function eq. (4) with respect to ᾱ,

∂ᾱg (ᾱ) = −Re

(

g∗

|g|
1

dim (U)
Tr
(

U †
goal∂ᾱU (ᾱ, T )

)

)

.

(6)

Neither U (ᾱ, T ) nor ∂ᾱU (ᾱ, T ) can be described by
closed form expressions. U evolves under the equation
of motion ∂tU (ᾱ, t) = − i

~
H (ᾱ, t)U (ᾱ, t). By taking the

derivative of the U e.o.m. with respect to ᾱ and swap-
ping derivation order, we arrive at a coupled system of
e.o.m.-s for the propagator and its gradient,

∂t

(

U
∂ᾱU

)

= − i

~

(

H 0
∂ᾱH H

)(

U
∂ᾱU

)

. (7)

As ᾱ is a vector, ∂ᾱU represents multiple equations of
motion, one for each component of ᾱ. ∂ᾱH is computed
using the chain rule and eqs. (1,2). We note that eq. (7)
was first presented in [33], but was not used for QOC.
GOAT optimization proceeds as follows: Starting at

some initial ᾱ (random or educated guess), initiate a
gradient-driven search (e.g. L-BFGS [34]) to minimize
eq. (4). The search algorithm iterates, requesting eval-
uation of eqs. (4,6) at various values of ᾱ, and will ter-
minate when the requested infidelity is reached or it fails
to improve g further. Evaluation of g (ᾱ), ∂ᾱg (ᾱ) re-
quires the values of U (ᾱ, T ) and ∂ᾱU (ᾱ, T ). These are
computed by numerical forward integration of eq. 7, by
any mechanism for ODE integration that is accurate and
efficient for time-dependent Hamiltonians, such as adap-
tive Runge-Kutta. Initial conditions are U (t = 0) = I
and ∂ᾱU (t = 0) = 0. Note that no back propagation is
required.
Experimental constraints can be easily accommodated

in GOAT by mapping the optimization from an un-
constrained space to a constrained subspace, and com-
puting the gradient of the goal function using the
chain rule. For example, ᾱ components may be con-
strained by applying bounding functions, e.g. αk −→
1
2 (vmax − vmin) sin (ᾱk) +

1
2 (vmax + vmin) which imposes

αk ∈ [vmin . . . vmax]. Amplitude constraints and a smooth
start and finish of the control pulse can be enforced by
passing the controls through a window function which
constrains them to a time-dependent envelope. Gradi-
ents for ∂ᾱH flow via the chain rule. See Appendix C
of the Supplementary Material for a fully worked-out ex-
ample.
Application of GOAT to state transfer, open systems

and super-operator generation are possible by replacing
eq. (7) with a derivative of the suitable equation of mo-
tion with respect to ᾱ, see [35]. Filters may be modeled
by including the filter’s internal state e.o.m., alongside
eq. (7), when deriving by ᾱ. See also [36]. Eqs. (6)
and (7) can be modified to provide second-order gradi-
ent information, allowing Hessian-driven search, such as
Newton-Raphson (see [37]).
Comparison with current algorithms. Examination of

the prevailing QOC methods reveals none meet all three
criteria for an ideal QOC method:
One class of QOC methods is based on gradient-free

optimization of the parameters: sample g (ᾱ) at several
ᾱ-s, deduce one or more new ᾱ-s for which g is expected
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to be lower, and repeat. This approach is simple and
flexible, and is the only possible procedure for closed-loop
calibration. However, it converges very slowly compared
to gradient-driven optimization, particularly when opti-
mizing high-dimensional parameter spaces. For example,
the Nelder-Mead optimization algorithm [38], at the basis
of the CRAB and dCRAB methods [39, 40], grows exces-
sively slow when the number of parameters approaches 10
[41] (dCRAB can be viewed as successive CRAB searches
of alternate subspaces). Other methods, such as CMA-
ES [42], genetic algorithms or Simultaneous Perturba-
tion Method [43], are somewhat better at handling large
parameter spaces, but are still slow to converge com-
pared to gradient-driven methods. When the gradient
of the goal function with respect to the parametrization,
∂ᾱg (ᾱ), can be computed efficiently, gradient-driven op-
timization algorithms outperform gradient-free methods
by orders of magnitude (see Appendix A of the Supple-
mentary Material and references within [34, 44]). Thus,
gradient-free methods fail criterion (iii). In contrast,
GOAT is gradient-driven, and can utilize any gradient-
driven search algorithm (including second order methods,
such as Newton), and therefore converges quickly, satis-
fying criterion (iii).

A second class of QOC methods, such as Krotov [45–
47] and GRAPE [8], derive from a variational formulation
of the QOC task [48], where the Schrödinger equation is
imposed as a constraint. This necessitates propagating
an adjoint operator backward in time from the goal gate,
acting as a Lagrange multiplier. The update rules for the
control fields in both the Krotov and GRAPE methods
are defined in terms of time-local expressions, implying a
piecewise constant (PWC) control ansatz. This presents
two types of problems. First, the PWC ansatz is incom-
patible with the low parameter counts needed for subse-
quent pulse calibration. Moreover, it does not lend itself
to the imposition of control constraints, such as band-
width, nor the freedom to choose a control ansatz. And
while workarounds have been found for both GRAPE and
Krotov ([13, 49] and [50, 51] respectively), these are non-
trivial to implement. Further, the variational formula-
tion necessitates a non-trivial re-derivation of the control
update rule whenever a change is made to the goal func-
tional (e.g. a new penalty term). Thus, GRAPE and
Krotov fail criteria (i) flexibility. In contrast, GOAT,
which does not derive from the variational formulation,
does not require back propagation. It can easily adapt
to new goal functions, utilize an arbitrary control ansatz
to produce a simple calibration of pulses, and impose
a wide range of constraints, meeting criteria (i). Sec-
ond, a PWC approximation of smooth low-bandwidth
controls, introduces significant numerical inaccuracies in
the control fields, and subsequently in the simulated dy-
namics, as demonstrated in Appendix B of the Supple-
mentary Material and references within [52, 53]. Thus,
GRAPE and Krotov fail criteria (ii) numerical accuracy.

GOAT, which allows arbitrary piecewise-continuous con-
trols, does not suffer from this problem.
While somewhat subjective, we believe GOAT to be

uniquely easy to understand and code, with a simple
mathematical structure (application of the chain rule
with modified equations of motion) and compatible with
off-the-shelf tools for gradient-driven search and ODE
propagation.

Flux tunable coupler. We consider the flux tunable
coupler presented in [15], where a 200ns iSWAP gate was
implemented with a fidelity of 0.982. This system con-
sists of two transmon qubits coupled to a tunable bus
resonator. The Hamiltonian reads

H =

2
∑

k=1

ωka
†
kak + ωTB(Φ)b

†b (8)

+gk(a
†
kb+ b†ak)− αk |2〉 〈2|k ,

where ωk are the frequencies of the qubits, ωTB(Φ) is
the flux-dependent frequency of the tunable bus, gk are
the coupling qubits-resonator couplings, αk are the qubit
anharmonicities, and ak, b denote the annihilation opera-
tors of the qubits and the tunable bus, respectively. The
dependence of the bus frequency on the modulated flux
is

ωTB(Φ) = ωTB,0

√

| cos(πΦ/Φ0)| (9)

Φ = Θ+ δ (t) cos(ωΦt) (10)

where Φ0 is the flux quantum, δ(t) is the controlled am-
plitude of the flux modulation and ωΦ is tuned to reso-
nantly couple |01〉 to |10〉.
Optimizing pulses for this system use GOAT’s flexibil-

ity in several ways. First, as the experiment allows for
correction of the single qubit Z rotations in software, we
used a modified goal function that is independent of such
rotations. See Appendix D of the Supplementary Mate-
rial for further details. Then, contrary to [15], we do not
use either the dispersive regime approximation, nor the
rotating wave approximation. Rather, the optimization
includes the carrier frequency (see Fig. 1). This implies
a more accurate simulation, and optimal pulses which re-
quire less calibration. Finally, we iteratively reduced the
complexity of the control pulse: starting with a Fourier
parametrization with tens of components, we successively
pruned the low amplitude components and re-optimized,
to reach 6 frequency components for a 100ns iSWAP. This
yielded an infidelity of 10−12 in the fully coherent model.
Assuming Markovian noise with T1 = T2 = 40µs and
thermalization to 25mK [54], the pulse achieves the de-
coherence limit of 99.5% fidelity. It is possible to improve
the fidelity further by two approaches. First, by short-
ening the pulse. This, however, requires more complex
pulse shapes, which are harder to calibrate. Second, one
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FIG. 1. Optimized flux modulation δ (t) generating an iSWAP
in the flux-tunable coupler of eq. (9). The infidelity is 10−12

in a fully coherent model and a noise-limited 99.5% with
T1 = T2 = 40µs and thermalization to 25mK [54]. (top) Un-
constrained Fourier pulse, sum of 6 frequency components.
(middle) Constraints applied using sigmoids, in both time
(pulse starts and ends smoothly at zero) and amplitude (lim-
ited to 0.3Φ0). (bottom) Output of waveform generator, in-
cluding carrier and DC bias. See Appendix C of the Supple-
mentary Material for further details.

can utilize non-Markovian features of the noise, with dy-
namic decoupling or spin-echo dynamics.
Calibration of simple cZ-pulses for flux-tunable qubits.

We consider a line of frequency-tunable qubits [16] with
nearest-neighbor couplings. Define

a =





0 1 0

0 0
√
2

0 0 0



 X = a†+a, Y = i
(

a† − a
)

, N = a†a .

(11)

H =

2
∑

k=1

ǫkI + qkNk + ηk |2〉 〈2|+ gk,k+1YkYk+1 . (12)

Parameters of the bare Hamiltonian are taken from re-
cent experiments [55]. We implement the control-Z (CZ)
gate in a two tunable-qubits system using one z control
per qubit, with the drive shape parameterized by error
functions (erf). After optimization, we obtain a control
signal described by only 16 parameters. Each control is
a sum of two terms

ak(t) =
Ak

4

(

1 + Erf

(√
π
sk
Ak

(t− t1i)

))

× Erfc

(√
π
sk
Ak

(t− t2i)

)

. (13)

A sigmoid function envelops the total control amplitude,
enforcing the limit. Optimization achieves a 30ns CZ
gate with infidelity of 10−13 when neglecting Markovian
effects, and a coherence-limited pulse when incoherent
processes are introduced. This is 25% faster than the CZ
presented in the supplementary information of [56].

0s 5ns 10ns 15ns 20ns 25ns 30ns
5.20GHz

5.50GHz

5.80GHz

200 400 600 800 1000 1200 1400
0.00

0.08

0.16

10-3.5 10-3 10-2.5 10-2 10-1.5 10-1
  0.0

  0.2

  0.4

FIG. 2. Simulation of 300 GOAT pulse calibrations, assuming
inaccurate characterization of system parameters. Fractional
error in the coupling g and anharmonicity η is taken to be
normal-distributed, with standard deviation of 3%. Top: ini-
tial (dotted) and final (solid) drive shape for a two tunable-
qubits cZ-gate parameterized with error functions using only
16 parameters. Red and blue lines depict the two qubit con-
trols, a1 (t) and a2 (t) of eq. (13). Middle: distribution of
the number of fidelity measurements needed to calibrate the
pulse using the quasi-Newton algorithm. The low pulse pa-
rameter count implies less than 1500 fidelity measurements
are needed in most simulated systems. Bottom: distribution
of pre- (blue) and post- (red) calibration infidelity. Pulses
have been calibrated up to the coherence limit imposed by
Markovian processes, 10−3.

Consider the more realistic scenario where some physi-
cal parameters are known only within a few percent. We
simulated calibration by closed-loop optimization of the
optimal drive parameters, to compensate for Hamilto-
nian mischaracterizations. The procedure is very sim-
ilar to Ad-HOC [19], but requires an order of magni-
tude fewer fidelity measurements, thanks to the low num-
ber of parameters characterizing the drive shape. The
choice of gradient-free algorithm (quasi-Newton instead
of Nelder-Mead) reduced the number of measurements
by an additional 10%. In our simulation, we considered
the coupling g and the anharmonicities η as random vari-
ables with Gaussian statistics and standard deviation of
3%. For each instance we applied the gradient-free algo-
rithm for closed-loop calibration, counting goal function
calls, which correspond to an experimental measurement
of gate fidelity. The results of the simulated calibration
are shown in Fig. 2. The key result is that for most ran-
dom instances, only a few hundred fidelity measurements
are required for calibration, Fig. 2b, to reach the final
fidelity, Fig. 2c. Ad-HOC could not be used efficiently
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in experiments because the required number of fidelity
measurements was on the order of thousands. GOAT
solves this issue by reducing the number of parameters,
which in turn decreases the number of fidelity measure-
ments to the point where the Ad-HOC approach becomes
a viable experimental option. The target infidelity was
set at 10−3, below the coherence limit reachable for these
gate durations [54]. Conversely, around 20% of cases did
not reach the 10−3 threshold, leading to the peak at 1500
fidelity measurements in the middle plot. Improvements
to the gradient-free search algorithm would allow detect-
ing this behavior early.
Discussion. We have presented the criteria for good

QOC algorithms: flexibility, accuracy and speed. Flexi-
bility requires the algorithm to faithfully model the ex-
periment, including control capabilities. This ensures re-
sultant pulses, once implemented, will produce the de-
sired dynamics. Moreover, it must allow the use of any
control ansatz, so that one may produce pulses described
by only a few parameters, enabling realistic calibration,
to bridge the gap between experimentx and simulated
model. Accuracy insures we do not downgrade model
accuracy due to numerical issues. Speed makes the QOC
process practical, allowing optimization of more accurate
models.
We presented a novel optimal control algorithm,

GOAT, based on equations of motion for the gradient
of the propagator with respect to the drive parameters.
Surveying prevailing QOC methods, we conclude that
GOAT is the only QOC method to satisfy all three cri-
teria. We demonstrated GOAT’s flexibility by optimiz-

ing pulses for two different systems, using two different
ansatz (erf and Fourier), applying amplitude and band-
width constraints in both cases, achieving fidelities signif-
icantly beyond current state-of-the-art. Further, we have
shown the feasibility of calibrating GOAT pulses, en-
abled by the small number of parameters which describe
them. GOAT’s mathematical formulation is straightfor-
ward, and does not require backward-propagating adjoint
states or the calculus of variations. It is also extremely
simple to implement. GOAT does not rely on a PWC rep-
resentation of bandwidth-limited controls, and therefore
its accuracy is only limited by how precisely the system
is modeled. Finally, GOAT is fast, being a parallelizable,
gradient-driven, optimization method.
This theoretical and numerical advance provides a sig-

nificant step toward the application of numerical opti-
mal control to superconducting quantum computing plat-
forms. The flexibility in pulse description allows the re-
duction of the number of parameters describing the op-
timized pulses, reducing the calibration time by an order
of magnitude, making it feasible. To our knowledge, this
is the first study showing the power of numerical optimal
control is applicable to solid state qubits experiments.
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