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Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In
the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflec-
tivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial
feedback; however, a reliable model of pond geometry does not currently exist. Here we show that
a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the
essential features of pond patterns. The only two model parameters, characteristic circle radius
and coverage fraction, are chosen by comparing, between the model and the aerial photographs of
the ponds, two correlation functions which determine the typical pond size and their connected-
ness. Using these parameters, the void model robustly reproduces the ponds’ area-perimeter and
area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation
functions of ponds on several dates, we also find that the pond scale and the connectedness are
surprisingly constant across different years and ice types. Moreover, we find that ponds resemble
percolation clusters near the percolation threshold. These results demonstrate that the geometry
and abundance of Arctic melt ponds can be simply described, which can be exploited in future
models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic

warming.

Arctic sea ice plays a major role in Arctic climate [1],
ecology [2], and economy. Sea ice’s recent rapid decline
is a hallmark of climate change [3] that global climate
models have systematically underestimated [4]. This is
believed to be largely due to small-scale processes that
cannot be captured accurately by large-scale models [5].
One such process is the formation of melt ponds on the
ice surface during the summer [6]. Melt ponds absorb sig-
nificantly more sunlight than the surrounding ice, mak-
ing ponded ice melt faster, creating a positive feedback
[7, 8]. The central importance of melt ponds was demon-
strated in 2014 by Schroeder et al. [9] who showed that
the September sea ice minimum extent can be accurately
predicted solely based on spring melt pond fraction. Cur-
rent models of melt ponds include comprehensive repre-
sentations of many physical processes and are capable
of reproducing Arctic-scale spatial distributions of pond
coverage [10-13]. However, their complexity and numer-
ous assumptions reduce their ability to provide a funda-
mental understanding of pond evolution, and call into
question their applicability in a changing climate.

Ponds typically evolve through several stages that are
controlled by ice permeability [14, 15]. Early in the sea-
son (typically late spring and early summer), ice is im-
permeable so that melt ponds can exist above sea level
and cover a large portion of the ice. Later in the sea-
son, as ice permeability increases, the ponds drain to the
ocean so that remaining ponds correspond to regions of
sea ice that are below sea level. After drainage, ponds
have a typical length-scale of several meters, likely de-
termined by the scale of winter snow dunes [16], and are
often connected by channels that form during drainage.

This post-drainage stage is typically the longest part of
melt pond evolution. An aerial photograph of drained
melt ponds is shown in Figure 1a.

Melt pond geometry has been shown to control the
strength of lateral melting of ice by pond water [17],
to impact the pattern of floe breakup [18], and to set
the landscape of available light for the organisms liv-
ing beneath the ice [19]. Several critical observations
have previously been made about pond geometry. Ho-
henegger et al. [20] showed that the fractal dimension,
D, of late-summer melt ponds, which characterizes their
area-perimeter relationship (P oc AP/2), transitions from
D = 1 for small ponds to D ~ 2 for large ponds. The size
(area) distribution of melt ponds has also been shown to
be a power law [21]. Although several models reproduce
these observations [22, 23], a basic understanding of the
reason for this behavior is lacking. In this paper we will
explain both of these observations using a simple geo-
metric model without invoking any assumptions about
the dynamics that govern the melt pond evolution.

Our model is a representation of post-drainage melt
ponds. It consists of randomly placing circles of varying
size on a plane and allowing them to overlap. The area
covered by circles in our model represents ice, while melt
ponds are represented by the voids left between the cir-
cles (Figure 1c). Similar models are sometimes used to
study transport properties in inhomogeneous materials,
and are known as “Swiss cheese” models [24]. Physically,
the circles can be thought of as regions where snow dunes
used to be in the winter, and melt ponds fill in the space
around them. Circle centers are placed with equal prob-
ability throughout the domain. Individual circles have



FIG. 1. a) A photograph of melt ponds taken on August 7, 1998 during the SHEBA mission. b) A binarized version of the
same image. ¢) A void model with a typical circle radius of 7o = 1.8 m, and a coverage fraction of p = 0.31.

radii, 7, randomly drawn from an exponential probabil-
ity distribution p(r) = %e”/ "o where rg is the mean
circle radius and defines the physical scale for the model.
We chose this probability distribution mainly due to its
simple form, but all of our main conclusions are robust to
using other distributions (see Supplementary section S4).
After choosing 7, the model is fully specified by choosing
the fraction of the surface covered by voids, p. To com-
pare our model with melt pond data, we analyzed hun-
dreds of photographs of sea ice taken during helicopter
flights on multiple dates during the SHEBA mission of
1998 and the HOTRAX mission of 2005, and separated
them into ice and pond categories using a machine learn-
ing algorithm (Figures la and b, Supplementary section
S1). In order to facilitate comparison with pond images,
we implemented the void model on a grid with the same
resolution and size as the pond images.

We begin the comparison by choosing the model pa-
rameters, 1o and p. To this end, we define two functions
- the two-point correlation function, C(I), and a cluster
correlation function, ¢g(), and compare them for pond
images and the model. A two-point correlation function
measures the probability that two points separated by a
distance [ are both located on some pond, while a cluster
correlation function measures the probability that they
are both located on the same pond. We first estimate rq
using C(l), because we can define it to be largely insensi-
tive to changes in p (see below). Once we have calibrated
ro by matching C(I), we can choose p using g(1).

For two points, x and y, separated by a distance [, the
two-point correlation function can be defined as:

(1)

where z(x) = 1 if a point x is located on a pond, and
z(x) = 0 otherwise, and (...) represents averaging over
different points and over different images. Subtracting p?
and dividing by p(1 — p) constrains C(I) to vary between
1 and 0, and makes it insensitive to changes in p (see
Supplementary section S2). The two-point correlation

function determines a typical length scale of variability
in melt pond coverage.

Plotting C(I) for melt ponds on a semi-log plot reveals
that it is approximately a sum of two exponentials (Fig-
ure 2a). Therefore, there are two characteristic length
scales in melt pond images - a small length scale compara-
ble to the size of individual ponds and a large length scale
that is comparable to the size of the image. The large
length scale corresponds to variability of pond fraction
due to large-scale ice features such as ridges or rafted ice
floes. To focus on melt pond features, we have removed
the contribution to C(I) from large scale ice features by
subtracting a fit to an exponential of C'() for [ > 25 m.
We varied this threshold, but found little difference in the
results. After subtracting the fit, we normalized the re-
mainder so that C'(0) = 1 (inset of Figure 2a). We show
the resulting functions for all of the available dates and
compare them to the void model in Figure 2b. Ponds of
all dates show similar C'(I) dropping by a factor of e af-
ter roughly 3.3m. We found that this is well reproduced
by the void model using o = 1.8 m (see Supplementary
section S2). The fact that the void model reproduces
the shape of the two-point correlation function suggests
that our assumption of randomly placing the circles is
reasonable.

Next, we determine p. With this parameter, we wish
to capture the pond geometric features such as the pond
size distribution and the fractal dimension, rather than
simply the pond coverage. For this reason, we do not
set p equal to the pond coverage fraction of melt pond
images, but instead we use the cluster correlation func-
tion to determine p. Essentially, the cluster correlation
function, g(1), measures the probability that two points
separated by a distance [ belong to the same finite pond.
However, there are some technical subtleties in how we
define g(I), and we give a precise definition in Supple-
mentary section S2.

In the model, in the limit of infinite domain size, there
exists a well-defined coverage fraction, p., the “percola-
tion threshold,” above which infinite clusters exist, and
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FIG. 2. a) An example of the two-point correlation function, C(1), for melt ponds shown on a semi-log plot. Dashed black lines
represent fits to a small length scale exponential and a large length scale exponential. The inset shows C(I) before and after a
fit to the large length scale exponential has been subtracted. b) A comparison between the two-point correlation function for
ponds from 1998 and 2005 (circles), and the void model (dashed line). Ponds on all dates show a similar scale matched by the
void model using ro = 1.8 m. ¢) A comparison between the cluster correlation function, g(), for August 7, 1998 (red circles),
August 14, 2005 (yellow circles), and the void model using the same 7 as in panel b (black dashed lines). Both model lines use
p = 0.31, and the difference between them is due only to differing simulated image sizes. The image size for 1998 is indicated
by a red arrow and the image size for 2005 is indicated by a yellow arrow. The fact that the exponential cutoff is set by the
image size indicates that the ponds are roughly at the percolation threshold. The inset shows an independent estimation of
the percolation threshold. Red points show the probability of finding a spanning cluster in the void model implemented on a
grid the same size and resolution as the SHEBA images. The probability of finding a spanning cluster increases from 0 to 1

between p = 0.28 and p = 0.31.

below which there is a maximum cluster size. The cluster
correlation function in the void model sensitively depends
on the deviation of the pond fraction from this percola-
tion threshold, |p — pc| (see Supplementary section S2).
Below and above the percolation threshold, the cluster
correlation function is greater than zero up to a cer-
tain distance, after which it exponentially decreases. As
the coverage fraction approaches the percolation thresh-
old, this cutoff length grows, and sufficiently close to the
threshold, it is set by the image size. The location of the
exponential cutoff quantifies the typical size of the largest
finite connected pond cluster. We discuss the functional
form of ¢g(I) in detail in Supplementary section S6.

Narrow connections between ponds are often missed by
the image processing algorithm so that for many dates
g(l) depends on the artificial threshold parameter used
in the machine learning algorithm to separate ice from
ponds (see Supplementary section S1, for details). The
only dates after pond drainage for which g(I) is stable
against changes in this threshold are August 7 of 1998
and August 14 of 2005. In Figure 2c, we compare the
cluster correlation function for the void model and data
on those dates. Remarkably, the pond clusters for both
dates appear to be organized very near the percolation
threshold, as indicated by the fact that the length scale
of exponential cutoff in g(I) is set by the image size. In
Figure 2¢ we use p = 0.31 to match the pond data, and
the difference between g(1) for the ponds from 1998 and
ponds from 2005 is solely due to a different image size.
In fact, using any p from a range 0.28 < p < 0.31 pro-

vides an equally good fit to the data, which indicates
that within this entire range the size of the largest pond
is determined by the image size. To independently con-
firm that ponds are well-described by the void model
near the percolation threshold, we ran the void model,
50 times at multiple values of p, and found the probabil-
ity of forming a cluster that spans at least one dimension
of the image (inset of Figure 2c). We found that this
probability increases from 0 to 1 between p = 0.28 and
p = 0.31, which closely matches the range of coverage
fractions that fit the pond g(I). We note that although
we chose p to match the cluster structure between the
model and the data, the value we found agrees reason-
ably well with the pond coverage fraction on those dates
(30%+5% on August 7 of 1998, and around 40% +5% on
August 14 of 2005). We discuss the relationship between
the pond coverage fraction and pond geometry in detail
in Supplementary section S6.

It is remarkable that the properties of ponds from 1998
and 2005, which likely developed under very different en-
vironmental conditions, are so similar: the correlation
functions for both years are well-fit by the void model
using the same ry and p. This is particularly surprising
since sea ice during the 1998 mission had a large propor-
tion of multiyear ice, whereas ice during the 2005 mission
was predominantly first-year ice.

Having chosen 79 and p, we can proceed to explain
the observations of pond fractal dimension and size dis-
tribution. Following Hohenegger et al. [20], we define
the fractal dimension of the pond boundary as the expo-
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FIG. 3. a) A comparison between the fractal dimension of pond boundaries for different dates after pond drainage from 1998
(red curves), 2005 (yellow curve), and the void model with 7o and p the same as in Fig 2 (black dashed curve). Examples of
ponds (below the curve) and voids (above the curve) of various sizes are also shown. b) Size distribution for ponds on August
7, 1998 (red dots), ponds on August 14, 2005 (yellow dots), and the void model (black dashed line).

nent that relates the area and the perimeter of the pond,
P < AP/2. The fractal dimension can vary between the
fundamental limits of D = 1 for regular shapes such as
circles to D = 2 for space-filling or linear shapes. We
find D as a function of A by fitting a curve to the area-
perimeter data. We explain the details of this fitting
procedure in the Supplementary section S3.

In Figure 3a we find D as a function of A for pond data
on all dates from the summer of 1998 after pond drainage
(red curves) and 2005 (yellow curve). Our results are
consistent with Hohenegger et al. [20], with the pond
fractal dimension transitioning from D ~ 1 to D ~ 2 at
A, ~ 100 m?, and a transition range spanning roughly
2 orders of magnitude. Without any tuning other than
choosing 7y and p using the correlation functions, the
void model is able to match the observed transition in
pond fractal dimension nearly perfectly (Figure 3a, black
dashed curve).

In the Supplementary section S7, we give an argument
that a transition from D < 2 to D ~ 2 is a generic con-
sequence of individual objects connecting and, therefore,
cannot be used as strong support for any particular phys-
ical model of melt ponds. On the other hand, matching
the fractal transition scale and the transition range are
non-trivial, and cannot be reproduced by an arbitrary
model of randomly connecting objects (see Supplemen-
tary section S9). At small sizes, the void model predicts
a dimension slightly larger than 1, likely corresponding
to the fact that small voids are not necessarily simple
smooth shapes. It is possible that small-scale physical
processes in real ponds, such as erosion of pond walls,
are responsible for smoothing small ponds into more cir-
cular shapes with D ~ 1.

Finally, we compare the pond size distribution with the
void model in Figure 3b. Again as a result of sensitivity
to the threshold parameter in the machine learning algo-
rithm, we only use pond data for August 7th of 1998 and

August 14th of 2005. At scales larger than roughly 10 m?
the pond size distribution follows an approximate power
law, in agreement with previous findings. The power law
behavior is particularly clear for ponds from 1998, and
the power law exponent (approximately 1.8) is slightly
larger than previously found [21]. Using the same ry and
p as before, the void model reproduces the pond size dis-
tribution over the entire range of observations, more than
6 orders of magnitude. This matching is highly robust:
the void model matches the pond size distribution even
at the smallest scales regardless of details such as the cir-
cle radius distribution or the shape of the objects placed
randomly (see Supplementary section S4).

We have shown that a simple model of voids surround-
ing overlapping circles captures key geometric patterns
of Arctic melt ponds with high fidelity and robustness,
with only two parameters that can be chosen naturally
by comparing the model and the data. Our model is
purely geometric, and can therefore be used as a bench-
mark against which to test any physical model. This
work shows that much of melt pond geometry can be un-
derstood simply by assuming that melt ponds are placed
randomly and have a typical size. Even though many
models will reproduce the same universal features, our
model is special in that it captures quantitative details
of melt pond geometry beyond what an arbitrary model
of connecting objects is capable of doing. Our work raises
two critical questions about melt pond physics that must
be answered. First, why does the pond scale appear to
be so robust for ponds evolving under differing environ-
mental conditions, and, second, why do ponds seem to be
organized near the percolation threshold? The answer to
the second question may be particularly interesting, as
it may point to self-organized critical behavior in melt
ponds, and may suggest that the pond coverage fraction
is more constrained than previously thought. Answering
these questions may yield deeper insight into melt pond



physics and allow for a better representation of this im-
portant process in global climate models.
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