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We develop the topological band theory for systems described by non-Hermitian Hamiltonians,
whose energy spectra are generally complex. After generalizing the notion of gapped band struc-
tures to the non-Hermitian case, we classify “gapped” bands in one and two dimensions by explicitly
finding their topological invariants. We find nontrivial generalizations of the Chern number in two
dimensions, and a new classification in one dimension, whose topology is determined by the energy
dispersion rather than the energy eigenstates. We then study the bulk-edge correspondence and the
topological phase transition in two dimensions. Different from the Hermitian case, the transition
generically involves an extended intermediate phase with complex-energy band degeneracies at iso-
lated “exceptional points” in momentum space. We also systematically classify all types of band
degeneracies.

Topological band theory provides a unified framework
for a wide range of topological states of quantum mat-
ter [1–10] such as insulators, (semi)metals and supercon-
ductors, and of classical wave systems [11–14] such as
photonic crystals and mechanical metamaterials. In this
theory, band structures of periodic media are classified
by topological invariants associated with energy eigen-
states in the momentum space. A well-known example
is the TKNN invariant or Chern number [1, 15] for band
structures in two dimensions with an energy gap. An
important consequence of this classification is that the
interface between topologically inequivalent media neces-
sarily hosts gapless boundary states, whereby the topo-
logical invariant changes its value.

Studies of topological band theory have so far mostly
dealt with systems described by Hermitian Hamiltoni-
ans. Recently there has been a growing interest in topo-
logical properties of non-Hermitian Hamiltonians [16–24]
applicable to a wide range of systems such as (but not
limited to) systems with open boundaries [25–30] and
systems with gain and/or loss [20, 31–46]. Interestingly,
non-Hermitian systems have unique topological proper-
ties with no Hermitian counterparts. A fascinating exam-
ple is non-Hermitian Hamiltonians at exceptional points,
where two or more eigenstates coalesce [25, 47–51]. Very
recently, the topological nature of exceptional points in
non-Hermitian Hamiltonians with additional symmetries
have been recognized [16–20]. Dynamical phenomena
near exceptional points are also being explored both the-
oretically [52–59] and experimentally [60, 61].

In this work, we develop the topological band the-
ory for non-Hermitian Hamiltonians and explore its
consequences, highlighting unique features due to non-
Hermiticity. We start by defining the notion of “gapped”
non-Hermitian band structures whose energy spectrum
is generally complex. We then classify topologically dis-
tinct “gapped” band structures and topologically stable
band degeneracies. Non-Hermitian bands with nonzero
Chern numbers in two dimensions are shown to support
protected edge states, with a range of energies connect-

ing two bulk bands in the complex plane. A new topo-
logical invariant unique to non-Hermitian band struc-
tures is found from the energy dispersion, instead of
Bloch wavefunctions. Furthermore, we find that the
topological phase transition between distinct “gapped”
non-Hermitian Hamiltonians generally involves an inter-
mediate phase with band degeneracies at isolated points
in momentum space, leading to the first realization of
exceptional points in two-dimensional band structures.

Consider a non-Hermitian Hamiltonian of a periodic
system, whose eigenstates are Bloch waves and whose en-
ergies En(k) vary with crystal momentum k in the Bril-
louin zone (BZ), thus defining a band structure. Here
n is the band index that labels different eigenstates.
While En(k) are generally complex, we define a band
n to be “separable” if its energy En(k) 6= Em(k) for all
m 6= n and all k. We define a band n to be “isolated”
if En(k) 6= Em(k′) for all m 6= n and all k,k′, i.e., the
region of energies {En(k),k ∈ BZ} in the complex plane
does not overlap with that of any other band. In this
case, we say the band En(k) is surrounded by a “gap”
in the complex energy plane where no bulk states exist.
A band is called “inseparable” if at some momentum the
complex-energy is degenerate with another band. Our
definition of “separable”, “isolated” and “inseparable”
bands are mathematically natural generalizations of the
gapped, fully gapped and gapless bands in the Hermitian
case, and form the basis of our topological classification
to be presented below.

Chern Numbers in 2D Separable Bands Associated
with each separable band is a set of energy eigenstates
defined over the BZ. Topological invariants, such as the
(first) Chern number for an energy band in two dimen-
sions, can be constructed from these eigenstates in a sim-
ilar way as in Hermitian systems.

However, an important difference now is the left eigen-
state and right eigenstate of a non-Hermitian matrix
H 6= H† are generally unrelated, although they share
the same eigenvalue. The right and left eigenstates sat-
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isfy the following eigenvalue equations:

H |ψR
n 〉 = En |ψR

n 〉 , H† |ψL
n〉 = E∗n |ψL

n〉 (1)

respectively. For separable band structures, one can
prove that 〈ψL

n |ψR
n 〉 6= 0 (Supplemental Material Sec. I).

Thus for any separable band with energy En in two di-
mensions k ≡ (kx, ky), one can construct four different
gauge invariant Berry curvatures:

Bαβn,ij(k) ≡ i 〈∂iψαn(k)|∂jψβn(k)〉 , (2)

with the normalization condition 〈ψαn |ψβn〉 = 1. α, β =
L/R. We refer to BLL, BLR, BRL and BRR as “left-left”,
“left-right”, “right-left” and “right-right” Berry curva-
tures.

The integrals of these four Berry curvatures over the
BZ define four seemingly different Chern numbers:

Nαβ
n =

1

2π

∫
BZ

εijB
αβ
n,ij(k)d2k, (3)

where εij = −εji. Importantly, we prove all four Chern
numbers are equal NLL = NLR = NRL = NRR, implying
that the topology is captured by a single Chern number.
We emphasize that these four Berry curvatures are in-
deed locally different quantities, although their integrals
all yield the same Chern number. The proof is presented
in Supplemental Material Sec. II. These Chern numbers
will vanish if H(k) = H(k)T or H(k) = H(−k)T (Sup-
plemental Material Sec. III).

A remarkable universal result of the topological band
theory in Hermitian systems is the existence of topolog-
ically protected edge states localized at the interface be-
tween two topologically distinct gapped phases, with en-
ergies inside the band gap. For non-Hermitian Hamilto-
nians, we ask whether topological edge states exist, and
if so, what are their energies in the complex plane.

For concreteness, we first show the existence of topo-
logical edge states in a generalized two-dimensional Dirac
fermion model with non-Hermitian terms:

H(k) = (kx + iκx)σx + (ky + iκy)σy + (m+ iδ)σz, (4)

The energy dispersion of H is obtained by diagonaliza-
tion:

E±(k) = ±
√
k2 − κ2 +m2 − δ2 + 2i(k · κ +mδ),

with k ≡ |k|, κ ≡ (κx, κy) and κ ≡ |κ|. For κ < |m|,
this complex-energy band structure is separable by our
definition above. It then follows from continuity that the
separable bands at m < −κ and m > κ are adiabatically
connected to the gapped bands in the Hermitian limit
δ = κ = 0 with m < 0 and m > 0 respectively by tuning
κ to zero, and therefore are topologically distinct with
Chern numbers differing by 1.

To demonstrate the existence of topological edge
states, we solve the domain wall problem, where
two semi-infinite domains with different parameters
(κ1,m1, δ1) and (κ2,m2, δ2) are separated by a domain
wall along the y axis. Since the momentum parallel to
the interface ky is conserved, we can write the edge state
wavefunction as ψky (x, y) = eikyyψky (x) and solve the
one-dimensional generalized Dirac equation for ψky (x):

[(−i∂x + iκx(x))σx + (ky + iκy(x))σy + (m(x) + iδ(x))σz]ψky (x) = Ekyψky (x), (5)

where the parameters (κ(x),m(x), δ(x)) =
(κ1,m1, δ1)θ(−x) + (κ2,m2, δ2)θ(x) take respective
values in the regions x > 0 and x < 0. θ(x) is the step
function. ψky (x) is required to be continuous at the
interface x = 0.

The solution of Eq. (5) with the step-like domain wall
takes the following form

ψky (x) =

(
ψ1

ψ2

)
[exp(x/λ+)θ(−x) + exp(x/λ−)θ(x)] .

(6)
Localized edge states only exist when Re(1/λ+) > 0 and
Re(1/λ−) < 0.

Solving λ± for the most general case is complicated.
For κy = 0, we can obtain the analytical solution when
the Dirac mass m have opposite signs in the regions x < 0

and x > 0. The localization lengths are [62]

1/λ+ =|m1|+ κ1,x + is1δ1,

1/λ− =− |m2|+ κ2,x − is2δ2.
(7)

Here si = mi/|mi| is the sign of the Dirac mass. The
dispersion of these edge state is still Eky = s2ky as in the
Hermitian case. Comparing Eq. (7) with the solution
in the Hermitian limit, a nonzero κx,i modifies the edge
state localization length. The requirements on the sign of
Re(1/λ±) are satisfied only for separable band structures
|κx,i| < |mi|.

For general cases κx, κy, δ 6= 0, we find numerically
that when the two domains have topologically distinct
separable band structures, there exists a band of edge
states localized at the domain wall. The energies of these
edge states have both real and imaginary parts, which lie
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FIG. 1. (Color online) The energies of two bulk bands (yel-
low and blue regions), and the edge state (green line) in the
complex-energy plane for the domain wall problem Eq. (5).
The bulk band is isolated according to our definition. The
energy unit is m. The bulk phase κ = (0.2, 0.3), δ = 0.4 is
connected to the vacuum (dispersion not shown) mvac/m =
−1,κvac = δvac = 0.

inside the “gap” in the complex energy plane and connect
to bulk bands. Fig. 1 shows an example of the complex-
energy spectra for bulk and topological edge states in our
domain wall setup. A detailed discussion on the numer-
ics, along with the discussion of a similar lattice model,
can be found in Supplemental Material Sec. IV.

Vorticity of Energy Eigenvalues In addition to the
Chern number, we find a new topological invariant as-
sociated with the energy dispersion of non-Hermitian
band structures, rather than the energy eigenstates. En-
abled by complex rather than real energies, this invariant
νmn(Γ) is defined for any pair of the bands as the wind-
ing number of their energies Em(k) and En(k) in the
complex energy plane :

νmn(Γ) = − 1

2π

∮
Γ

∇k arg [Em(k)− En(k)] · dk, (8)

where Γ is a closed loop in momentum space. We call
νmn(Γ) the vorticity. In the following, the subscript is
suppressed when the band indices m and n are evident.

A nonzero vorticity defined on a contractible loop Γ in
the BZ implies the existence of a band degeneracy within
the region enclosed by Γ, where Em(k0) = En(k0). For
a pair of separable bands, the vorticity can be nonzero
only for non-contractible loops in the BZ. As we will see,
this leads to a (Z/2)d classification of d-dimensional sep-
arable bands. For example, consider the non-Hermitian
Hamiltonian in one dimension

H(k) = b+(k)σ+ + b−(k)σ−, (9)

where σ± ≡ σx± iσy and b±(k) are complex functions of
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FIG. 2. (Color online) (a) The swapping of energy eigen-
values. θ ∈ [0, 2π] parametrizes the loop Γ. The dashed
curves are the projection of the energy trajectory. (b) The
dispersion near an exceptional point. The Hamiltonian is
H(k) = σ+ + (kxσx + kyσy). The loop Γ in (a) is the
circle k =

√
k2x + k2y = 1, which is parametrized by θ as

k = (cos θ, sin θ). (c) The energy dispersion along kx = 0.

k with periodicity 2π. The spectrum of H(k) is

E±(k) = ±2
√
b+(k)b−(k). (10)

The two bands are separable when b±(k) 6= 0 for k ∈
[0, 2π]. Taking Γ to be the entire one-dimensional BZ,
the vorticity νΓ is simply half the sum of winding num-
bers of b+(k) and b−(k) around the origin of the complex
plane. Although the winding of b+(k) and b−(k) are al-
ways integers due to periodicity, the vorticity νΓ can be
a half-integer, and is quantized as Z/2.

It is important to notice the square root singularity in
the dispersion of Eq. (10). Due to this singularity, when
νΓ is a half-integer, both the pair of energy eigenvalues
(E+, E−) and the corresponding eigenstates (|ψ+〉 , |ψ−〉)
are swapped without encountering any degeneracy as the
momentum is traversed along Γ [63, 64]. Fig. 2(a) shows
such a scenario of νΓ = 1/2.

The Z/2 classification we found for separable non-
Hermitian Hamiltonians in one dimension is in contrast
with the case of gapped Hermitian Hamiltonians, all of
which are topologically trivial.

In one dimension, there is no topologically protected
edge state within the “gap” in the complex energy plane.
Without chiral symmetry, one can always add on-site po-
tential to lift the energy of the edge state into the bulk
spectrum. We note that the zero modes found in [18, 19]
are due to the chiral symmetry, and our understanding
is in accordance with [24].
Topologically Stable Band Degeneracies Having com-
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pleted the classification of separable band structures, we
now study topologically stable band degeneracies in non-
Hermitian systems, which cannot be removed by small
perturbations. In Hermitian systems, a famous exam-
ple of topologically stable band degeneracies is the Weyl
point in three dimensions [10], whereas band degeneracies
in two dimensions such as the Dirac point are unstable in
the absence of symmetry. The stability of Weyl point is
intimately related to the fact that finding a level degen-
eracy in a Hermitian matrix generically requires tuning
3 parameters. Since energy eigenvalues of non-Hermitian
Hamiltonians are complex, one might expect finding a
level degeneracy requires tuning even more parameters.
Remarkably, the contrary is true. For non-Hermitian
Hamiltonians, finding a level degeneracy generically re-
quires tuning 2 parameters [50]. Also, the Hamiltonian
at the generic degeneracy points are defective, i.e., its en-
tire set of eigenstates do not span the full Hilbert space.
A pedagogical review of these results is in Supplemental
Material Sec. V.

Therefore, non-Hermitian periodic Hamiltonians in
two or higher dimensions can have a new type of stable
band degeneracy at defective points, which has no analog
in Hermitian band structures. The k ·p Hamiltonian near
such a defective point takes the following standard form,
up to a unitary transformation,

H(k) = aI + εσ+ +
∑
i,j

kicijσj , (11)

where i = x, y, j = x, y, z, a, ε and cij are complex
numbers. The dispersion to the leading order of k is

E±(k) = a±
√
cxkx + cyky, (12)

where cx = 2ε(cxx + icxy) and cy = 2ε(cyx + icyy). The
degeneracy is defective if ε 6= 0. In the general case
cx, cy 6= 0 and Im(cy/cx) 6= 0, the band degeneracy
defined by Eq. (11) and (12) is called an “exceptional
point” in the literature [25, 48–51]. A concrete exam-
ple of a k · p Hamiltonian near an exceptional point is
H(k) = εσ+ +v(kxσx+kyσy), whose dispersion is shown
in Fig. 2(b).

Contrary to their name of “exceptional”, we find ex-
ceptional points to be ubiquitous in non-Hermitian band
structures in dimensions greater than one. In particular,
exceptional points appear in topological phase transitions
in two dimensions, giving rise to a inseparable interme-
diate phase. Hermitian Hamiltonians in two dimensions
do not have robust band degeneracies in the absence of
symmetry.

Our claim can be demonstrated using the generalized
Dirac model Eq. (4). The intermediate regime |m| < |κ|
separates the two topologically distinct separable band
structures at m > κ and m < −κ. In this intermediate
regime, the two bands E±(k) cross at two isolated points

(a) (b)

m
DP ( =0)
EP Ring ( 0)HP

×n
2 + 2- 2 + 2

z

-

n

FIG. 3. (Color online) (a) The bulk phase diagram of Hamil-
tonian Eq. (4) for a given δ. The white regions represent the
separable phases, and the colored region represents the in-
separable phase. The light blue region κ > |m| > 0 is the
phase with a pair of exceptional points (EP Pair); the red
lines κ = |m| > 0 is the phase with a hybrid point (HP). The
origin κ = m = 0 is a Dirac point (DP) if δ = 0 and is a ring
of exceptional points (EP Ring) if δ 6= 0. (b) The trajectory
of the exceptional points in the momentum space when m
moves along the purple dashed line in (a). Here κ = (δ, 0).

k± in the momentum space:

k± = −mδ
κ

n̂±
√

(κ2 −m2)(κ2 + δ2)

κ
ẑ× n̂. (13)

Here n̂ ≡ κ/κ. It is straightforward to check that k±
are exceptional points. Generated from a separable band
structure with zero total vorticity, these two exceptional
points have opposite vorticities. The phase diagram of
Eq. (4) and the typical trajectory of these two band de-
generacy points are shown in Fig. 3.

When κ = |m| 6= 0 the exceptional point pair in-
evitably merges at

Qs = k± = −sδn̂, (14)

where s = m/|m|. Denote q = k −Qs. The dispersion
near such a degeneracy reads

Es,±(q) = ±
√

(q2 + 2sqnδ) + 2iqnm. (15)

qn ≡ q · n̂ is the component of q along n̂ direction. The
Hamiltonian is defective at this degeneracy. However, it
belongs to the case cy = Im(cy/cx) = 0 in Eq. (12). The
dispersion is proportional to

√
q and q along the direction

of n̂ and ẑ× n̂, resulting in a zero vorticity. Being defec-
tive but with no vorticity distinguishes this degeneracy
from the exceptional point. We call it “hybrid point” due
to the anisotropy in the dispersion. We leave a system-
atical study of band degeneracies resulting from merging
two exceptional points [65, 66] in Supplemental Material
Sec. VI. The remaining special case m = κ = 0 hosts a
ring of exceptional point at k = |δ| [27]. This “excep-
tional ring” is present due to the rotational symmetry
at κ = 0, hence is generally unstable in two dimensions.
As δ tends to zero, the ring shrinks to a Dirac point.
Only then do we recover the Hermitian topological phase
transition point.
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In summary, the most general scenario of non-
Hermitian topological transition is through “hybrid point
— exceptional point pair — hybrid point”, instead of the
Dirac point in the Hermitian case.

As already been discussed earlier in this paper, the
square root singularity in Eq. (12) leads to the pair
switching of eigenvalues/eigenstates around an excep-
tional point. This can be characterized by the half-
integer quantized topological invariant νΓ defined in
Eq. (8), where Γ encloses a single exceptional point. It
follows from Eq. (12) that νΓ = ±1/2 whose sign is deter-
mined by the sign of Im(cy/cx). Therefore, exceptional
points are characterized by topological charges ±1/2.

We note that in Ref. [19] there is a similar formula char-
acterizing the topology of the exceptional point, which
can be seen as a special case of Eq. (8), with the spec-
trum being symmetric with respect to E = 0, i.e., a = 0
in Eq. (11). In Ref. [21], the loop topology of excep-
tional points is characterized by the integral of the Berry
phase when it is encircled twice. This can be seen as a
special case of Eq. (8) when the Hamiltonian is complex
symmetric or of size 2 × 2. In general, this phase is a
path-dependent geometric phase and is thus not quan-
tized [67–69].

Extension of non-Hermitian topological band theory
to higher dimensions, different symmetry classes and its
applications to a wide range of physical systems will be
presented in forthcoming works.
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