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We demonstrate theoretically that toroidal Alfvén eigenmode (TAE) can parametrically decay into
geodesic acoustic mode (GAM) and kinetic TAE (KTAE) in a toroidal plasma. The corresponding
threshold condition for the TAE amplitude is estimated to be |δB⊥/B0| ∼ O(10−4). Here, δB⊥ and
B0 are, respectively, the perturbed magnetic field of the pump TAE and the equilibrium magnetic
field. This novel decay process, in addition to contributing to the nonlinear saturation of energetic
particle (EP)/α-particle driven TAE instability, could also contribute to the heating as well as
regulating the transports of thermal plasmas.

PACS numbers: 52.35.Bj, 52.30.Gz, 52.35.Mw, 52.55.Pi

This work is a theoretical analysis of a novel nonlin-
ear process by which power is transferred non-locally in
velocity space from energetic particles (EPs) to thermal
plasma components. This mechanism is mediated by an
efficient parametric decay of toroidal Alfvén eigenmodes
(TAEs) [1] into geodesic acoustic modes (GAMs) [2] and
kinetic TAE (KTAE) [3, 4], which control power trans-
fer to thermal ions (α-channeling) and thermal electrons
(anomalous α-particle slowing down), respectively. The
first part of this Letter presents the nonlinear decay insta-
bility and gives an estimate of the threshold condition on
the TAE intensity for this novel process to occur. It also
computes the resultant anomalous thermal ion and elec-
tron heating rates. As the critical TAE intensity thresh-
old is comparable with that of other important nonlinear
processes in burning fusion plasmas, we conclude that the
new mechanism analyzed here should play an important
role in realistic conditions. It could also regulate thermal
plasma fluctuation, and, thus, transport via the nonlin-
ear generation of GAMs [5]. In the second part of this
Letter, we discuss how this novel nonlinear process can
be studied by nonlinear gyrokinetic simulations as well as
how it can be observed and characterized experimentally.

Introduction. Energetic particles related physics are
crucial for burning plasmas in magnetically confined fu-
sion devices as EPs contribute significantly to the total
power density. In particular, two important aspects are
heating of thermal plasmas and excitation of symmetry
breaking collective modes. Plasma heating, especially
of bulk ions, is crucial for fusion reactivity. Coulomb
collisions preferentially transfer EP energy to electrons
at high speed and, thus, means for effectively transfer-
ing energy from fusion-α’s to bulk ions, known as α-
channeling, have been proposed and explored [6]. Sym-
metry breaking collective modes excited by EPs, on the
other hand, could have deleterious effects on EPs and
thermal plasma confinement. Among these, noteworthy
are shear Alfvén wave (SAW) instabilities with group

velocity nearly aligned with the equilibrium magnetic
field and wave-particle resonance condition with 3.5MeV
fusion-α’s easily satisfied in burning plasmas such as
ITER [7]. EP and Alfvén wave physics in fusion plas-
mas are reviewed in Ref. [8].

Due to equilibrium geometry and/or plasma nonuni-
formities, SAW instabilities manifest themselves as var-
ious Alfvén eigenmodes (AE) in magnetically confined
plasmas; e.g., TAE [1]. TAE can be driven unstable by
EPs at a relatively low threshold [9, 10], and lead to EP
transport and degrade overall plasma confinement. The
transport rate is related to TAE amplitude and spectrum,
and thus, understanding the nonlinear dynamics of TAE
is important for assessing the properties of burning plas-
mas in future reactors.

Nonlinear mode-mode coupling, as one of the two
routes for TAE nonlinear dynamics [11], is relatively less
investigated [12–15] than nonlinear wave-EP interactions
[16, 17]. TAE enhanced coupling to SAW continuum
due to downward spectrum cascading via ion induced
scattering in the low-β (β ≪ ǫ2) and the long wave-
length (k2⊥ρ

2
i < ω/Ωci) limit is analyzed in [12]. Here,

β ≡ 8πn0T/B
2
0 is the ratio of plasma pressure to equi-

librium magnetic field pressure with n0 and T being
the equilibrium plasma density and temperature, respec-
tively. B0 is the equilibrium magnetic field, and ǫ ≡ r/R0

is the inverse aspect ratio with r and R0 being the toka-
mak minor and major radii. kθ ≡ m/r is the poloidal
wavenumber with m being the poloidal mode number,
and ρi = vi/Ωci is the ion gyroradius with vi being the
ion thermal velocity and Ωci the ion cyclotron frequency.
Nonlinear modification of TAE gap structure by nonlin-
ear distortions of equilibrium magnetic field or density
are discussed in Refs. [13] and [14], respectively. In the
former one, in particular, the emphasis is on the com-
pressibility of the m = 1 quasi-mode instead of its heavy
ion Landau damping as discussed in Ref. [12]. The non-
linear generation of axisymmetric zero frequency zonal
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structures (ZFZS) via modulational instability, including
both zonal flow and zonal current, is investigated in Ref.
[15, 18]. Parametric decay of TAE into geodesic acoustic
mode (GAM) [2], i.e., the fast varying zonal flow in the
acoustic frequency range, and a lower frequency TAE,
is investigated in Ref. [19], and it is found that TAE
spontaneous decay occurs only when the pump TAE is
localized in the upper half of the SAW continuum gap,
which generally is not the case for typical tokamak pa-
rameters.

In this work, a new novel mechanism of TAE decaying
into GAM and small scale lower kinetic TAE (LKTAE)
[3, 4, 20] is proposed. Besides the apparent consequence
on TAE nonlinear saturation, the nonlinear process pro-
posed here also has important implications on both ther-
mal plasma heating and confinement. The nonlinearly
generated GAM and LKTAE are damped via ion and
electron Landau damping, respectively, leading to ion as
well as electron heating. On the other hand, GAM as
finite frequency zonal flow may interact with other type
of turbulence, e.g., drift waves (DWs), leading to cross-
scale couplings and potentially improved confinement [5].
Noting that GAM corresponds to finite frequency convec-
tive cells in toroidal geometry, while kinetic TAEs can be
viewed as standing wave generated due to the coupling
of two counter propagating kinetic Alfvén waves (KAWs)
via toroidicity [3], the current work can, thus, be under-
stood qualitatively, as generalization to toroidal geome-
tries of Ref. [21], where finite frequency convective cell
generation by KAWs in uniform plasma is discussed.

Parametric decay of TAE. To investigate the non-
linear interactions among the pump TAE (ω0, k0), GAM
(ωG, kG) and LKTAE (ωL, kL), the scalar potential δφ
and parallel vector potential δA‖ are adopted as the field
variables. One then has, δφ = δφ0+ δφG+ δφL, with the
subscripts 0, G and L denoting pump TAE, GAM and
LKTAE, respectively. The parametric decay of TAE to
GAM and LKTAE is then studied within the framework
of nonlinear gyrokinetic theory. For TAE and LKTAE
with high toroidal mode numbers in magnetized plas-
mas, the well-known ballooning-mode decomposition [22]
in the (r, θ, φ) field-aligned flux coordinates is assumed

δφ0 = A0e
i(nφ−m0θ−ω0t)

∑

j

e−ijθΦ0(x − j) + c.c.,

δφL = ALe
i(nφ−m0θ−ω0t)e−i(

∫
k̂Gdr−ωGt)

×
∑

j

e−ijθΦL(x− j) + c.c..

Here, (m = m0+j, n) are the poloidal and toroidal mode
numbers, m0 is the reference value of m, nq(r0) = m0,

q(r) is the safety factor, x = nq −m0 = nq′(r − r0), k̂G
is the radial envelope wavenumber due to GAM modu-
lation and k̂G ≡ nq′θk in the ballooning representation,
Φ is the fine radial structure associated with the parallel

wavenumber k‖ and magnetic shear, and A is the enve-
lope amplitude. The other notations are standard.
For the (secondary) generated GAM we assume it is

predominantly electrostatic, with both the usual meso-
scale structure and an additional fine-scale radial struc-
ture [18] due to the radially localized structure of the
pump TAE; thus,

δφG = AGe
i(
∫
k̂Gdr−ωGt)

∑

j

ΦG(x− j) + c.c.

Here, ΦG is the fine scale structure of GAM [18], and
the summation over j is the summation over the radial
positions where the pump TAE poloidal harmonics are
localized. As a result, kG = k̂G − i∂r lnΦGêr, and one
typically has |∂r lnΦG| ≫ |k̂G|.
The nonlinear GAM equation can be determined from

the nonlinear gyrokinetic vorticity equation, and one ob-
tains:

EG∗δφG∗ = i(c/B0ωG)kGkθ,0 [Γ0 − ΓL

−(b̂L − b̂0)k
2
‖,0V

2
Aσ0∗σL/(ω0ωL)

]

δφ0∗δφL.(1)

The two terms on the right hand side of equation (1)
are, respectively, the generalized Reynolds and Maxwell
stresses, valid for arbitrary k⊥ρi. Here, Γk ≡ 〈J2

kF0/n0〉
with 〈· · ·〉 ≡

∫

(· · ·)d3v denoting velocity space integra-
tion, Jk ≡ J0(k⊥ρ) with J0 being the Bessel function of
zero index, ρ = v⊥/Ω, F0 is the equilibrium particle dis-
tribution function, k‖ ≡ (nq − m)/(qR0) is the parallel

wavenumber, b̂ = k2⊥ρ
2
i /2, σk ≡ 1 + τ − τΓk, τ ≡ Te/Ti,

and σk 6= 1 denotes finite parallel electric field δE‖ and,
thus, deviation from ideal MHD condition δE‖ = 0 due
to kinetic effects. Furthermore, EG is the linear GAM
dispersion function, defined as [23]

EG ≡
〈

(1− J2

G)F0/n0

〉

− Ti

∑

s

〈qsJGωdδHL

G
〉/(n0e

2ωδφ
G
);

with δHk being the non-adiabatic component of the guid-
ing center distribution function [24] and ωd = (v2⊥ +
2v2‖)/(2ΩR0) (kr sin θ + kθ cos θ) being the magnetic drift
frequency.
Equation (1) has two radial scales due to the weak

ballooning nature of TAE [18]. Assuming ΦG∗ ≡ Φ0∗ΦL

as the fast radial varying component [18] of GAM, one
then derives the envelope equation of GAM:

EG∗AG∗ = i(c/B0ωG)kθ,0α̂GA0∗AL. (2)

Here, introducing radial integration as averaging over
length scales intermediate between fine radial scale
and envelope meso-scale discussed above, we have

α̂G ≡
(∫

Φ0∗ΦLdr
)−1 ∫

Φ0∗ΦLkG[Γ0 − ΓL − (b̂L −
b̂0)k

2
‖V

2
Aσ0∗σL/(ω0ωL)]dr.

The nonlinear LKTAE generation due to the coupling
between the pump TAE and GAM, is described by

ELδφL = i
c

B
kGkθ,0

(

Γ0 − ΓG

ωL
+

1− ΓL

σLω0
σ0

)

δφG∗δφ0.(3)
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Here, EL ≡ (1−ΓL)−k2‖V
2
AσLb̂L/ω

2
L is the WKB disper-

sion function of LKTAE and the radial eigenmode dis-
persion relation of LKTAE can be derived noting that
k2‖V

2
A ∝ (1 − ǫ0 cos θ) with ǫ0 ≡ 2(r/R0 +∆′), ∆′ repre-

senting finite Shafranov shift and σL = 1 + τ − τΓL 6= 1
due to ion finite Larmor radii effects. Noting that ωL =
ω0 − ωG, the nonlinear coupling coefficient of equation
(3) recovers that of equation (10) of Ref. 21 for KAW
lower sideband generation by pump KAW beating with
finite frequency convective cell, when only the electro-
static convective cell generation is considered.

Noting that ΦG = Φ0ΦL∗ , and proceeding as for equa-
tion (2) to remove fine scale fast radial variations, the
eigenmode equation of LKTAE can be derived as

ÊLAL = i(c/B0)kθ,0α̂LAG∗A0, (4)

with ÊL ≡
∫

dr|ΦL|2EL and α̂L ≡
∫

dr|Φ0|2|ΦL|2kG[(Γ0 − ΓG)/ωL + (1 − ΓL)σ0/(σLω0)].
For LKTAE with even mode structure, the eigen-
mode dispersion relation can be written as [4, 20]

ÊL ≡ (πk2θρ
2
iω

2
AD̂L)/(2

2ξ̂+1Γ2(ξ̂ + 1/2)ω2
L), with

D̂L = −2
√
2Γ(ξ̂ + 1/2)/(α̂Γ(ξ̂)) − δWf , δWf be-

ing the normalized potential energy due to thermal
plasma contribution, Γ(ξ̂) and Γ(ξ̂ + 1/2) being Euler

gamma-functions, ξ̂ ≡ 1/4 − Γ+Γ−/(4
√

Γ−ŝ2ρ̂2K),
Γ± ≡ ω2

L/ω
2
A ± ǫ0ω

2
L/ω

2
A − 1/4, ω2

A ≡ V 2
A/(q

2R2
0),

α̂2 = 1/(2
√

Γ−ŝ2ρ̂2K), ŝ ≡ r∂rq/q being the magnetic
shear, and ρ̂2K ≡ (k2θρ

2
i /2)(3/4+ (Te/Ti)(1− iδe)) denot-

ing the kinetic effects associated with finite ion Larmor
radii and electron parallel dynamics. In particular, δe
describes dissipative effects associated with electrons,
e.g., Landau damping.

The nonlinear dispersion relation can then be derived
from equations (2) and (4)

ÊLEG∗ = − (ckθ,0/B0)
2
(α̂Gα̂L/ωG)|A0|2. (5)

In the long wavelength (k2⊥ρ
2
i
<∼ 1) limit, equation (5)

recovers equation (17) of Ref. 19, where a pump TAE
decaying into a GAM and a TAE lower sideband (still a
gap mode and not a damped eigenmode of the discretized
continuous spectrum as in the present case) is discussed.

Noting that the frequency difference between neigh-
bouring LKTAEs is rather small [4], and that GAM fre-
quency depends on kG and thus kr,L due to finite Larmor-
radius and drift orbit-width effects [23], the impact of
frequency mismatch on the parametric decay process is,
in general, negligible. This, of course, further requires
that local GAM continuum frequency being smaller than
ω0 − ωL. Taking EG∗ = −2ib̂G (γ + γG) /ωG with γG
being the collisionless damping rate of GAM [23], while

ÊL ≃ i∂ωL
ÊLr(γ+γL) with γL being the radiative damp-

ing rate of LKTAE [4, 20], ÊLr being the real part of ÊL

and ∂ωL
ÊLr ≡ ∂ÊLr/(∂ωL), we then obtain the desired

dispersion relation of the parametric decay process

(γ + γG)(γ + γL) = −
(

c

B0
kθ,0

)2
α̂Gα̂L|A0|2

2b̂G∂ωL
ÊLr

. (6)

The condition for the spontaneous excitation of the para-
metric instability is then

−
(

c

B0
kθ,0

)2
α̂Gα̂L|A0|2

2b̂G∂ωL
ÊLr

> γLγG, (7)

i.e., the nonlinear drive by the pump TAE overcomes the
threshold condition due to GAM and LKTAE damping.
Equation (7), generally, requires numerical solution

due to its complex dependence on the mode structures,
and thus, equilibrium geometry. Analytical estimations
can be made in the simplified limits, e.g., for b̂L ≪ 1.
Noting that, for |b̂k| ≪ 1, Γk(b̂k) ≃ 1 − b̂k − 3b̂2k/4 and

σk ≃ 1 + τ(b̂k + 3b̂2k/4), one then has α̂G ≃ kG(b̂L −
b̂0)[1 − ω2

A/(4ω0ωL)] < 0 and α̂L ≃ (kG/ωL)[b̂G − b̂0 +

b̂L((1+ τ b̂0)/(1+ τ b̂L))((ω0 −ωG)/ω0)] > 0. So the right
hand side of equation (6) has a positive sign. Noting
that |δBr,0| ∼ |ckθk‖,0A0/ω0|, the threshold condition on
pump TAE amplitude can be estimated as

(

δBr

B0

)2

∼ γLγG
ω2
0

k2‖,0

k2L

4

ǫ0
∼ O(10−9), (8)

with typical parameters such as |γL/ω0| ∼ |γG/ω0| ∼
10−2 [4, 23], kLρi <∼ 1 and k‖ρi ∼ 10−3. The nonlinear
cross-section of the analyzed nonlinear decay instability
is comparable to other channels for TAE nonlinear sat-
uration via wave-wave coupling investigated in the short
wavelength ( k2⊥ρ

2
i > ω/Ωci ) limit [25], e.g., ZFZS gen-

eration [15, 19].
Impact on plasma heating. The process discussed

here, besides its apparent impact on TAE saturation,
has also effect on plasma heating; since the generated
GAM and LKTAE would be dissipated through ion and
electron Landau damping, respectively. Thus, the GAM
ion Landau damping provides an additional channeling
of fusion-α power density to bulk ion heating [6, 26];
whereas LKTAE electron Landau damping contributes
to anomalous α-particle slowing down. The heating rate
can be estimated by equations (2) and (4) with the help
of an additional equation describing the feedback of the
two sidebands to the pump TAE, which can be obtained
closely following the derivation of equation (3):

Ê0A0 = −i(c/B0)kθ,0α̂0AGAL. (9)

with Ê0 ≡
∫

dr|Φ0|2[(1 − Γ0) − k2‖V
2
Aσ0b̂0/ω

2
0] being the

eigenmode dispersion function of pump TAE, and α̂0 ≡
∫

dr|Φ0|2|ΦL|2kG[(ΓL − ΓG)/ω0 + (1 − Γ0)σL/(σ0ω0)].
The three-wave nonlinear dynamic equations, can then
be cast as

(∂t − γ0)A0 = − c

B0∂ω0
Ê0r

kθ,0α̂0AGAL, (10)
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(∂t + γG∗)AG = − c

2B0b̂G
kθ,0α̂GA0∗AL, (11)

(∂t + γL)AL =
c

B0∂ωL
ÊLr

kθ,0α̂LAG∗A0. (12)

Here, γ0 is the linear growth rate of pump TAE
due to resonant EP drive. The LKTAE and
GAM amplitudes can be estimated from the fixed
point solution of the above equations, and one ob-
tains |AL|2 = −2γ0γGb̂G∂ω0

Ê0r/((c/B0)
2k2θ,0α̂0α̂G) and

|AG|2 = γ0γL∂ωL
ÊLr∂ω0

Ê0r/((c/B0)
2k2θ,0α̂0α̂L), respec-

tively. Thus, the power of ions heating by GAM
Landau damping is then Pi = 2γGωG∂ωG

ÊGr|AG|2
and the electron heating power by LKTAE is Pe =
2γLωL∂ωL

ÊLr|AL|2. Note that, “GAM channeling” was
proposed in Ref. [26], where the ion Landau damping
of the GAM resonantly excited by EPs was investigated.
However, due to the low GAM frequency compared to the
high characteristic frequencies of fusion-α’s, this process
is, in general, inefficient in burning plasmas.

Numerical/experimental verification. To verify
the nonlinear process proposed and analyzed here, one
can either resort to numerical simulations or experi-
ments. In order to properly account for all the relevant
physics including nonlinear coupling in the short wave-
length limit and dissipation due to electron dynamics
such as collisionless Laudau damping, numerical simu-
lation codes with nonlinear gyrokinetic treatment of ions
and drift kinetic treatment of electrons are required.

For experimental observations, meanwhile, noting that
the pump TAE and, thus, the generated GAM and LK-
TAE are localized in tokamak center, where the TAE
drive (by EPs) is maximum; and that |kG| ∼ |kr,L| ∼
O((ǫ0ρ

2
i /(n

2q′2))−1/4), diagnostics with high resolution
in both radial structure and frequency for local (not line
averaged) fluctuations are required. Possible diagnostics
could be phase contrast imaging (PCI) [27], beam emis-
sion spectroscopy (BES) [28] or electron cyclotron emis-
sion imaging (ECEI) [29]. Better signal-to-noise ratio is
required for clearer demonstration of the nonlinear de-
cay process. One option is to set up the experiments in
the condition for minimized threshold conditions, which
generally requires q

√

7/4 + Te/Ti > 1 for weak GAM
Landau damping and 3% >∼ βi > (λǫ/(2q))2 for weak
TAE/LKTAE Landau damping and ωG > ω0−ωℓ due to
the frequency matching constraint. Here, ωℓ is the lower
accumulational point frequency of toroidicity induced
SAW continuum gap and λ expresses the fraction of ω0−
ωℓ in units of the gap width. For the process discussed
here to dominate over other processes in long wave-
length limits [12–14], one further requires k2⊥ρ

2
i > ω0/Ωci,

which corresponds to (Ti/TE)
1/2/(qǫ1/2) > ω0/Ωci for

EP driven TAEs. Another possibility is using antenna
excitation of TAE [30, 31] such that there is no wave-EP
interactions, and one can focus on the decay process. The
threshold TAE amplitude can then be measured directly

by scanning the antenna strength. Further insights and
understanding can be achieved by antenna excitation of
TAE and LKTAE at the same time to observe the gen-
eration of GAM. The excitation of TAE and KTAE at
the same time has more applications than purely aca-
demic study, since in burning plasmas TAE and KTAE
(more likely upper KTAE) can be excited by EPs at the
same time, and the generation of GAM can directly in-
fluence plasma confinement as well as α-channeling, as
we have discussed above. The relative intensity ratio of
LKTAE to pump TAE can be roughly estimated from the
fixed point solutions of equations (10), (11) and (12), and

is given by A2
L/A

2
0 = (γ0/γL)(∂ω0

Ê0,r/∂ωL
ÊL,r)(α̂L/α̂0),

which, for typical JET parameters, can be estimated as
A2

L/A
2
0 ∼ 0.1.

Conclusion and discussion. In this Letter, TAE
decaying into a GAM and a LKTAE with the same
poloidal/toroidal mode number of the pump TAE is in-
vestigated as a possible channel for TAE nonlinear satu-
ration. This channel is possible when the GAM frequency
is larger than the difference between the pump TAE fre-
quency and the lower accumulation point frequency of the
toroidicity induced SAW continuum gap, i.e., βq2 ≫ ǫ2.
The nonlinear dispersion relation for the decay insta-
bility is derived, valid for arbitrary wavelength. The
conditions for the decay instability to take place, i.e.,
the threshold condition for the pump TAE amplitude
to overcome GAM and LKTAE damping, is given by
equation (7). This threshold condition needs, generally,
numerical solution with the mode structure and geome-
try carefully accounted for. However, in the k2⊥ρ

2
i
<∼ 1

limit, it can be analytically simplified and estimated to
be |δBr/B0|2 ∼ 10−9, comparable to other channels for
TAE nonlinear saturation via wave-wave coupling in the
short wavelength ( k2⊥ρ

2
i > ω/Ωci ) limit.

Besides the impact on TAE saturation, the decay pro-
cess discussed in this Letter will also contribute to the
channeling of EP/fusion-α power density to bulk ther-
mal plasma heating. The GAM Landau damping will
lead to bulk ion heating, and thus, has direct impact on
steady state operation of a fusion reactor; whereas LK-
TAE is predominantly damped by electron kinetics, and
therefore will contribute to the anomalous slowing down
of fusion-α’s. An estimate of the power to ion and elec-
tron heating are derived, respectively.
As a final remark, it is worthwhile noting that the

GAM radial structures generated by the novel mecha-
nism proposed in this work are typically comparable with
the DW radial correlation length. The nonlinear gener-
ated GAM, thus, provide additional benefits of regulat-
ing the DW turbulence and, consequently, improved con-
finement. In this respect, as noted above, EP could be
regarded as an effective “nonlinear free energy source”,
for the GAM fluctuations. Thus, the present nonlinear
mechanism may be considered as example and evidence
of the unique role played by EP as mediators of cross-
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scale couplings in burning plasmas of fusion interest [32].
This work is supported by US DoE GRANT, the Na-

tional Science Foundation of China under grant Nos.
11575157 and 11235009, the ITER-CN under Grants
Nos. 2013GB104004 and 2013GB111004, Fundamental
Research Fund for Chinese Central Universities under
Grant No. 2017FZA3004 and EUROfusion Consortium
under grant agreement No. 633053.

[1] C. Cheng, L. Chen, and M. Chance, Ann. Phys. 161, 21
(1985).

[2] N. Winsor, J. L. Johnson, and J. M. Dawson, Physics of
Fluids 11, 2448 (1968).

[3] R. R. Mett and S. M. Mahajan, Physics of Fluids B:
Plasma Physics 4, 2885 (1992).

[4] F. Zonca and L. Chen, Physics of Plasmas 3, 323 (1996).
[5] T. S. Hahm, M. A. Beer, Z. Lin, G. W. Hammett, W. W.

Lee, and W. M. Tang, Physics of Plasmas 6, 922 (1999).
[6] N. Fisch and M. Herrmann, Nuclear Fusion 34, 1541

(1994).
[7] K. Tomabechi, J. Gilleland, Y. Sokolov, R. Toschi, and

ITER Team, Nuclear Fusion 31, 1135 (1991).
[8] L. Chen and F. Zonca, Review of Modern Physics 88,

015008 (2016).
[9] L. Chen, in Theory of Fusion Plasmas, edited by J. Va-

clavik, F. Troyon, and E. Sindoni (Association EU-
ROATOM, Bologna, 1988), p. 327.

[10] G. Y. Fu and J. W. Van Dam, Physics of Fluids B 1,
1949 (1989).

[11] L. Chen and F. Zonca, Physics of Plasmas 20, 055402
(2013).

[12] T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995).
[13] F. Zonca, F. Romanelli, G. Vlad, and C. Kar, Physical

review letters 74, 698 (1995).
[14] L. Chen, F. Zonca, R. Santoro, and G. Hu, Plasma

physics and controlled fusion 40, 1823 (1998).
[15] L. Chen and F. Zonca, Phys. Rev. Lett. 109, 145002

(2012).
[16] H. L. Berk and B. N. Breizman, Physics of Fluids B 2,

2246 (1990).
[17] F. Zonca, L. Chen, S. Briguglio, G. Fogaccia, G. Vlad,

and X. Wang, New Journal of Physics 17, 013052 (2015).
[18] Z. Qiu, L. Chen, and F. Zonca, Nuclear Fusion 57,

056017 (2017).
[19] Z. Qiu, L. Chen, and F. Zonca, EPL (Europhysics Let-

ters) 101, 35001 (2013).
[20] F. Zonca and L. Chen, Physics of Plasmas 21, 072121

(2014).
[21] F. Zonca, Y. Lin, and L. Chen, EPL (Europhysics Let-

ters) 112, 65001 (2015).
[22] J.W. Connor, R.J. Hastie, and J.B. Taylor, Physical Re-

view Letters 40, 396 (1978).
[23] F. Zonca and L. Chen, Europhys. Lett. 83, 35001 (2008).
[24] E. A. Frieman and L. Chen, Physics of Fluids 25, 502

(1982).
[25] L. Chen and F. Zonca, EPL (Europhysics Letters) 96,

35001 (2011).
[26] M. Sasaki, K. Itoh, and S.-I. Itoh, Plasma Physics and

Controlled Fusion 53, 085017 (2011).

[27] M. Porkolab, J. C. Rost, N. Basse, J. Dorris, E. Edlund,
L. Lin, Y. Lin, and S. Wukitch, IEEE transactions on
plasma science 34, 229 (2006).

[28] W. Mandl, R. C. Wolf, M. G. von Hellermann, and
H. P. Summers, Plasma Physics and Controlled Fusion
35, 1373 (1993).

[29] B. Tobias, C. Domier, T. Liang, X. Kong, L. Yu, G. Yun,
H. Park, I. J. Classen, J. Boom, A. Donné, et al., Review
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