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Abstract 

By using optical phase modulators (PMs) in a fiber-optical circuit, we theoretically and 

experimentally demonstrate large control over the spectrum of an impinging signal, which may 

evolve analogously to discrete diffraction in spatial waveguide arrays. The modulation phase acts as 

a photonic gauge potential in the frequency dimension, realizing efficient control of the central 

frequency and bandwidth of frequency combs. We experimentally achieve a 50 GHz frequency shift 

and three-fold bandwidth expansion of an impinging comb, as well as the frequency analogue of 

various refraction phenomena, including negative refraction and perfect focusing in the frequency 

domain, both for discrete and continuous incident spectra. Our study paves a promising way towards 

versatile frequency management for optical communications and signal processing using time 

modulation schemes. 
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Controlling the frequency of light is important both in exploring fundamental physics [1-5] and for 

practical applications, ranging from high-speed communication [6, 7], ultrafast spectroscopy [8, 9] to 

precise metrology [9-11]. Traditional methods to modify and control the frequency content of a 

signal rely on nonlinear optical effects, as in highly nonlinear fibers [12, 13]. However, nonlinear 

optical phenomena are limited by intrinsically low efficiencies and require high pump power [14, 15]. 

Another possibility to achieve frequency conversion is through temporal modulation [16-19], which 

has raised significant attention recently in the context of non-reciprocal signal propagation [18, 19]. 

Temporal modulation offers the additional advantage of controlling the phase of light through the 

generation of an effective gauge potential for photons, in direct analogy with how the vector 

potential changes the phase of electron wavefunction [20-27]. The effective gauge potential in turn 

provides new opportunities to control photons, in analogy with how electrons can be controlled by 

suitably tailored vector potentials, including the realization of photonic Aharonov-Bohm effect [20, 

22-24], photonic quantum Hall effect [21] and non-magnetic optical isolators and circulators [22, 

25-27]. 

Here we investigate another opportunity offered by the effective photonic gauge potential in 

time-modulated systems, consisting in the precise control and manipulation of the spectrum of 

impinging signals. Towards this goal, we have been inspired by discrete diffraction phenomena in 

waveguide arrays, which enable efficient control of the spatial profile of optical beams as they 

propagate along them [28-32]. In this paper, we show that a temporally modulated waveguide can 

realize analogous diffraction phenomena, with the transverse spatial dimension replaced by a 

synthetic frequency dimension. The band structure of this synthetic lattice can be efficiently 

controlled by a photonic gauge potential through different modulation phases, enabling the 

generation of frequency combs with controllable bandwidth and center frequency. We 

experimentally demonstrate this effect in a fiber-optic system based on two cascaded optical phase 

modulators driven by a radiofrequency sinusoidal alternating voltage. By varying the phase of the 

radiofrequency signal of the two modulators, we can control the photonic gauge potential, and in turn 

we realize various refraction phenomena and perfect imaging in the synthetic frequency space. All 

demonstrated phenomena can be applied in optical communications and signal processing systems, 

where the development of techniques for efficient control of the impinging spectrum is very 

important. 
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Consider a travelling-wave electro-optic phase modulator consisting of LiNbO3 waveguide. As 

schematically shown in Fig. 1(a), the waveguide is modulated by a sinusoidal radiofrequency (RF) 

signal with instantaneous refractive index n(z, t) = n0 + Δn⋅cos(Ωt − qz + φ). Here n0 is the 

background refractive index, Δn, Ω, q and φ are the modulation amplitude, frequency, wave vector, 

and initial phase, respectively. The dispersion relation of the considered mode in the vicinity of ω0 is 

shown in Fig. 1(b). As the waveguide is modulated by an alternating voltage with frequency Ω, new 

frequencies in the spectrum are generated through intraband transitions, forming a frequency comb 

with frequency interval Ω. The electric field of the frequency comb is E = ∑nan(z)exp[i(ωnt − βnz)], 

where ωn = ω0 + nΩ and βn = β0 + nq (n = 0, ±1, ±2,…) denote the frequency and propagation 

constant of nth-order optical mode, respectively. In order to satisfy the phase-matching condition, the 

group velocity of the optical mode should be equal to the modulation signal velocity [33-35]. Within 

a narrow frequency range around ω0, the dispersion relation of the mode is linear and the group 

velocity dispersion can be neglected, as shown in Fig. 1(b). The phase-matching condition becomes 

Ω/q = c/ng with ng being the group index of the mode at ω0. The amplitude of the nth-order mode an(z) 

is governed by the coupled-mode equation [36] 
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where C = Δnk0/2 is the coupling strength between adjacent order modes with k0 being the vacuum 

wavenumber. Equation (1) is mathematically consistent to the equation describing mode coupling in 

a spatial waveguide array, highlighting the analogy between these two systems, where the transverse 

spatial dimension of the array is replaced by a synthetic frequency dimension. The additional phase 

acquired by the optical mode during photonic transitions is equal and opposite to the modulation 

phase for upward and downward transitions, respectively. Such a nonreciprocal phase shift is the 

photonic analogue of the electronic Peierls phase φ = ∫cAds acquired by an electron as it moves along 

a path c in the presence of a magnetic vector potential A [20-27, 37-39]. Here the gauge potential 

operates in the synthetic frequency dimension and is related to the phase of photons when hopping 

from one frequency to another 
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from which we find Aeff = φ/Ω. Since the definition of φ relies on the choice of time origin and 
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exhibits a gauge ambiguity, the potential is also gauge-dependent. Therefore, the effect of gauge 

potential is embodied in the gauge-invariant phase difference of modulation as a reference 

modulation phase. 

Similar to spatial waveguide array, the frequency dimension can support Bloch modes with an(z) 

= a0(0)exp(inφ0)exp(ikzz). Here a0(0) is the uniform amplitude, φ0 is the initial Bloch momentum 

along frequency dimension and kz is the collective propagation constant in the z direction. The Bloch 

mode is itself a frequency comb, with Bloch momentum acting as the phase difference between 

adjacent comb lines. Substituting an(z) into Eq. (1), we can obtain the band structure for the 

frequency comb 

0 0( ) 2 cos( ),zk C= − −φ φ φ                                  (3) 

Denoting φ0 = kωΩ, kω is the initial Bloch wave vector in the frequency dimension. The band 

structure is rewritten as kz(kω) = − 2Ccos[(kω − Aeff)Ω], so the gauge potential can induce a band 

structure shift in the momentum space [40, 41]. For a realistic frequency comb with finite width and 

center Bloch momentum φ0, the group velocity in frequency dimension is vg,ω = − ∂kz/∂kω = − 

2CΩsin(φ0 − φ), giving rise to a frequency shift Δω(z) = ∫z 
0vg,ωdz′. For one PM with length L, the 

phase modulation depth is mϕ = Δnk0L = 2CL. So the total accumulated frequency shift is 

                                   0ω sin( ),mΔ = − Ω −ϕ φ φ                                  (4) 

In addition to undergoing central spectral shift, the finite-width frequency comb will also experience 

bandwidth expansion, which can be described by the diffraction coefficient [28-30] 

2
2
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ω
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∂
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                            (5) 

which also refers to the group velocity dispersion in frequency space. From Eqs. (4) and (5), we can 

infer that |Δω|max = mϕΩ and |D|min = 0 for φ0 − φ  = ± π/2. The frequency comb will experience 

diffraction-free evolution with maximum spectral shift. On the other hand, for φ0 − φ = 0 or π, we 

have |Δω|min = 0 and |D|max= 2CΩ2, the spectral shift vanishes and the bandwidth expansion reaches 

its maximum. 

By cascading two PMs with distinct modulation phases φ1 and φ2, the frequency comb will 

exhibit a refraction at their boundary, analogous to the refraction at the interface between two 

mediums with different refractive index. The relative refractive index is n12(φ0) = kz,1(φ0)/kz,2(φ0), 
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which is given by 
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By employing different gauge potentials in the two PMs, we can impart arbitrary refraction 

phenomena on the frequency combs, such as realizing positive, negative refraction and spectral 

compression. 

The above theoretical analysis has been experimentally verified in Fig. 2(a), which consists of 

two cascaded PMs (PM1 and PM2) with modulation phases φ1 and φ2. In the implementation, the 

connector A is switched on. The frequency comb is generated by a mode-locked laser with initial 

Bloch momentum φ0, which is synchronized with the two PMs by a fixed modulation frequency 

Ω/2π = 10 GHz. Other experiment details are discussed in Supplementary [36]. Firstly, we keep two 

PMs modulated in phase (φ1 = φ2) and fix mϕ1 = mϕ2. As shown in Fig. 2(b), the envelope of 

frequency comb experiences a sinusoidal variation as φ0 – φ1 varies. The continuous evolution of 

frequency shift is due to the variation of gauge potential, which agrees well with the theoretical 

prediction of Eq. (4). The spectrum can also be controlled by the modulation depth mϕ (= mϕ1 + mϕ2). 

In the experiment, the modulation is first applied on PM1 and the modulation depth mϕ1 increases 

linearly to its maximum. Then we fix mϕ1 and increase linearly the modulation depth mϕ2 on PM2 

until its maximum with the same value of mϕ1, as shown in the inset of Fig. 2(a). In Figs. 2(c) and 

2(d), the spectral width remains constant and the comb center manifests linear blue and red shifts for 

φ0 – φ1 = – π/2 and π/2, respectively. The maximum frequency shift is ~ 50 GHz (~ 0.4 nm) which 

spans up to five comb lines. On the other hand, for φ0 – φ1 = 0 in Fig. 2(e), the spectral center is not 

affected and bandwidth is broadened by three folds from 0.18 to ~ 0.6 nm. Again, these results are 

fully consistent with theoretical predictions. Finally, by applying distinct gauge potentials to the two 

PMs, such that φ1 ≠ φ2, we can impart arbitrary refraction phenomena for the frequency comb. In Fig. 

2(f), we choose φ0 − φ1 = − π/2 and φ0 − φ2 = π/2, the frequency comb undergoes a “negative 

refraction” between the two PMs. Other scenarios of frequency refractions are shown in 

Supplementary Fig. (S5) [36]. 

In addition to enabling the diffraction control of frequency combs, the gauge potentials can also 

provide broad control over frequency comb generation. For one PM under a single frequency input, 

the output spectrum is an = a0(i)nJn(mφ)exp(inφ), where a0 is the input amplitude and Jn is nth-order 
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Bessel function. Since the definition of φ relies on the choice of time origin, it has no physical 

meaning on its own without reference and cannot be detected from the output amplitude spectrum 

|an| = a0|Jn(mφ)|. On the contrary, for two cascaded PMs under a single frequency input, the output 

amplitude spectrum is [36] 

                               0 1| | | (2 cos( )) |,
2ϕ
φΔ=n na a J m                                 (7) 

Where mϕ1 = mϕ2, Δφ = φ2 − φ1. Therefore, the phase difference of modulation is gauge-invariant and 

can be utilized to control the frequency comb generation. 

We have verified this phenomenon experimentally by using a continuous-wave laser (connector 

B in Fig. 2(a) is switched on) to generate a single frequency. Firstly, we keep mϕ1 = mϕ2 and vary Δφ 

= φ2 − φ1 from 0 to π, as shown in Fig. 3(a), the output spectrum is squeezed from its maximum to a 

single frequency, validating the theoretical prediction of Eq. (7). We can also fix Δφ and successively 

increase mϕ1 and mϕ2. The band structures of the two PMs are shown in Fig. 3(b) as φ1 = π/2, φ2 = − 

π/2. For in-phase modulation Δφ = 0, shown in Fig. 3(c), the output spectrum is |an| = a0|Jn(mϕ1 + 

mϕ2)|, which exhibits constructive interference of frequency comb generation in the two PMs. On the 

other hand, for out-of-phase modulation Δφ = π, as shown in Fig. 3(d), the output spectrum becomes 

|an| = a0|Jn(mϕ1 − mϕ2)|, manifesting destructive interference of comb generation in the two PMs. 

Interestingly as mϕ1 = mϕ2, the spectrum exhibits a time-reversal process in PM2 and ultimately 

restores to the input single-frequency, manifesting the analogue of “perfect imaging” in the 

frequency domain. 

The signal of a single-frequency can be regarded as the superposition of all frequency combs 

with Bloch momentum φ0 covering the entire Brillouin zone. For Δφ = π in Fig. 3(b), the band 

structures exhibit opposite shift with n12(φ0) = −1, each frequency comb exhibits negative refraction 

and opposite phase front evolutions in the two PMs [36], giving rise to the perfect focusing for a 

single-frequency. This phenomenon is analogous to the perfect imaging of a point light source by a 

real-space “superlens” [42-45]. The two PMs with Δφ = π can be treated as a frequency “superlens”, 

with a relative refractive index of n12 = −1. Interestingly, this frequency “superlens” does not require 

complicated metamaterials devices, it can be flexibly constructed by out-of-phase modulation of two 

PMs. 

The phenomenon of “perfect imaging” in the frequency domain is applicable to arbitrary input 
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spectra. In Figs. 4(a)-4(c), we input two continuous-wave lasers of 1550 and 1550.08 nm, with 

frequency interval Ω/2π = 10 GHz. In Fig. 4(a), the output spectrum is squeezed from the widest to 

its original input of two frequencies as Δφ varies from 0 to π. For Δφ = 0 in Fig. 4(b), the input two 

frequencies exhibit linear diffraction as mϕ increases, forming a broad frequency comb. For Δφ = π in 

Fig. 4(c), the spectrum experiences discrete diffraction in PM1 and restore to its initial profile at the 

end of PM2. In Figs. 4(d)-4(f), the incident wave is a supercontinuum spectrum [46], as the 

connector C in Fig. 2(b) is switched on. In Fig. 4(d), the output spectral width is squeezed 

monotonously as Δφ varies. For Δφ = 0 shown in Fig. 4(e), the spectrum is linearly broadened as mϕ 

increases. While for Δφ = π in Fig. 4(f), the spectrum is broadened in PM1 and then compressed in 

PM2, ultimately being restored to its initial profile. The results confirm that the perfect imaging can 

be applied to arbitrary discrete and continuous spectra, see also Supplementary Fig. (S7) [36]. 

Finally, we investigate the nonreciprocal properties of discrete frequency diffraction in the 

system, enabled by the time-reversal symmetry breaking through temporal modulation. In Figs. 5(a) 

and 5(b), we inject a single frequency into one PM in forward and backward directions and vary the 

modulation frequency from Ω/2π = 6 GHz to 18 GHz. As the waves propagate forward, the 

frequency comb can be generated with the interval being equal to the modulation frequency. While in 

the backward, the side bands of output spectrum are negligible. The nonreciprocal property is 

attributed to the phase-matching condition required to induce photonic transitions. As the RF and 

optical waves propagate in opposite directions, the phase-matching condition is destroyed and 

photonic transitions are negligible. These results suggest that discrete frequency diffraction can 

exhibit inherent nonreciprocal properties over a broad bandwidth. 

In summary, we demonstrate discrete frequency diffraction in temporal modulated waveguides, 

which is analogous to discrete diffraction of light in spatial waveguide arrays. The spectral shift and 

bandwidth expansion for frequency combs can be arbitrarily controlled by photonic gauge potentials 

originating from the modulation phase. A frequency shift up to 50 GHz and bandwidth expansion up 

to three-folds for frequency combs have been achieved. These metrics can be further improved by 

using more PMs. By cascading two PMs with distinct gauge potentials, we also realize negative 

refraction for frequency combs and perfect imaging for arbitrary input spectra. Our study may 

stimulate the developments of high-efficient frequency shifters and perfect-lens, with applications in 

signal reshaping, spectral-temporal imaging, and secure optical communications. 
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FIG. 1. (a) Schematic of LiNbO3 phase modulator (PM), modulated by a travelling-wave RF signal 

through two parallel electrodes with length L and spacing d. (b) Dispersion curve of optical modes 

and photonic intraband transitions in the vicinity of ω0. The green dashed line denotes the tangent of 

the dispersion curve at ω0. Ω, q are the modulation frequency and wave vector with ± φ being the 

phase shift accompanying photonic transitions. (c) Band structure of frequency comb for φ = 0 and φ 

= π/2. 
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FIG. 2. (a) Experimental set-up. PS: phase shifter, EA: electrical amplifier, VA: variable attenuator, 

BPF: band-pass filter, PC: polarizer controller, EDFA: erbium-doped fiber amplifier. Different 

optical sources are utilized separately when only one of the fiber connectors A, B, and C is switched 

on in each experimental implementation. Inset depicts the process of varying modulation depth mϕ1 

and mϕ2 upon the two PMs, respectively. (b) Output frequency spectrum as φ0 − φ1 varies for mϕ1 = 

mϕ2. (c)-(e) Frequency comb evolution as φ0 − φ1 = − π/2, π/2, and 0 for φ1 = φ2. (f) Frequency comb 

evolutions for φ0 − φ1 = − π/2 and φ0 − φ2 = π/2. 
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FIG. 3. (a) Output frequency spectrum versus Δφ for mϕ1 = mϕ2. (b) Band structures of the two PMs 

for φ1 = − π/2 and φ2 = π/2. Frequency evolutions: (c) Δφ = 0. (d) Δφ = π. 
 
 
 
 
 
 

 



15 

 

FIG. 4. (a) Two continuous-wave laser evolution versus Δφ for mϕ1 = mϕ2. Output spectral evolutions: 

(b) Δφ = 0. (c) Δφ = π. (d) Supercontinuum evolution versus Δφ for mϕ1 = mϕ2. Supercontinuum 

evolutions: (e) Δφ = 0. (f) Δφ = π. The red dashed lines denote the maximum modulation depth 

applied on PM1. 

 

 

 

 

 

 

 

 



16 

 

FIG. 5. Output spectral evolution of one PM versus the modulation frequency under a 

single-frequency input from forward (a) and backward (b) directions. The red lines indicate the 

output spectra as Ω/2π = 10 GHz. 


