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The Casimir-Lifshitz torque between two biaxially polarizable anisotropic planar slabs is shown
to exhibit a non-trivial sign-reversal in its rotational sense. The critical distance ac between the
slabs that marks this reversal is characterized by the frequency ωc ∼ c/2ac at which the in-planar
polarizabilities along the two principal axes are equal. The two materials seek to align their principal
axes of polarizabilities in one direction below ac, while above ac their axes try to align rotated
perpendicular relative to their previous minimum energy orientation. The sign-reversal disappears
in the nonretarded limit. Our perturbative result, derived for the case when the differences in the
relative polarizabilities are small, matches excellently with the exact theory for uniaxial materials.
We illustrate our results for black phosphorus and phosphorene.

The Casimir-Lifshitz force [1] between neutral objects
in the mesoscopic scales has been well established by the
modern precision experiments [2]. This force is a mani-
festation of the quantum fluctuations in the electromag-
netic fields that are confined by the boundaries, and is a
retarded long-wavelength analogue of the van der Waals
force when the finite speed of light c is taken into consid-
eration. A conceptually related but a significantly chal-
lenging problem is that of the Casimir-Lifshitz torque,
which arises when the rotational symmetry of the sys-
tem is disrupted. The arduousness of calculating the
Casimir-Lifshitz torque, including retardation effects, is
demonstrated by the fact that the exact analytic eval-
uation of the torque between two uniaxially anisotropic
semi-infinite half slabs by Barash [3] has never been re-
produced by independent methods. A similar evaluation
of the torque between two biaxially anisotropic materials
is still lacking. Barash’s calculation is the theoretical ba-
sis for the experimentally motivated papers in Refs. [4, 5].
The evaluation of the torque does become tractable in
the nonretarded limit [6]; however, the Casimir-Lifshitz
torque obtained in this way underestimates the magni-
tude even at 1 nm and fails to capture the non-trivial
effects originating from retardation.

In this article, we evaluate the torque between two par-
allel biaxially anisotropically polarizable slabs of finite
thicknesses di, for i = 1, 2, separated by a distance a,
as described in the inset of Fig. 1, in the retarded limit.
We consider the case when the differences in the two in-
planar polarizabilities, which are along the two in-planar
principal axes, are small. We use a perturbative expan-
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û2

v̂2

θ
û1
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FIG. 1. Preview: The torque between two biaxially polar-
izable planar slabs as a function of the separation distance
a. Our perturbation theory predicts that when the in-planar
polarizabilities along the two principal axes of one of the ma-
terials are equal at a characteristic frequency ωc, the torque
may change sign at a critical distance ac. Black phospho-
rus, whose crystalline structure is shown in the inset, and its
monolayer phosphorene are such materials used in our analy-
sis. The solid curve is a preview of our central result, shown
here for the torque between two semi-infinite slabs of black
phosphorus when the relative angle θ = π/4. The dashed
curve is the corresponding nonretarded limit.

sion in the parameter

βi(ω) =
εui (ω)− εvi (ω)

εui (ω) + εvi (ω)
, (1)

that defines the degree of anisotropy in the polarizabil-
ities of two media. Here, ω is the frequency associated
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with the fluctuations of the fields. The leading order per-
turbative expression for the torque shows a simple linear
dependence on the product β1β2, providing notable qual-
itative insight. In particular, it prompts us to predict a
reversal in the direction of the torque as a function of the
separation distance a. This change in the direction of the
torque is marked by a critical distance ac∼c/2ωc, where
ωc is the corresponding characteristic frequency at which
the perturbative parameter βi = 0, i.e., the two in-planar
polarizabilities of one media are equal. This prediction
is motivated by the results in Ref. [7], which discusses
similar effects in the context of Lifshitz pressure.

The reversal in the rotation of the torque as a func-
tion of separation distance has never been reported to
our knowledge. The sign-reversal in the torque reported
here is above and beyond the well understood change
in the sign arising from the periodic oscillatory depen-
dence in the angle θ [3–6]. We show that both black
phosphorus (BP) and its two-dimensional (2D) mono-
layer phosphorene (2D-P) are suitable materials that per-
mit βi(ωc) = 0, characterized by crossings in the plots
of their in-planar components of the dielectric functions
with respect to frequency, as shown in Fig. 2. We ver-
ify and report our confirmation of the separation distance
dependent sign-reversal of the torque experienced in slabs
comprising of BP and 2D-P. The critical distance ac is
approximately 40 nm for BP and 2D-P, but with a little
bit of material engineering it should be possible to con-
struct materials that suit a specific need. In Fig. 1, we
showcase the result for BP, where two slabs try to align
their principal axes of polarizabilities in one direction be-
low ac, while above ac they try to align their principal
axes perpendicular relative to their previous minimum
energy orientation. This sign-reversal behavior is absent
in the corresponding nonretarded torque.

The major obstacle in calculating the torque is that the
electromagnetic modes in the presence of a biaxially po-
larizable material do not separate into transverse electric
(TE) and traverse magnetic (TM) modes. In our method,
we circumvent this hindrance by choosing the system to
be uniaxial in the absence of perturbation, βi = 0 for all
ω. For the setup shown in the inset of Fig. 1, we consider
that the dielectric functions εi(ω) of two nonmagnetic
biaxially anisotropic slabs of thickness di are diagonal in
the basis of their principal axes (ûi, v̂i, n̂),

εi(ω)=εui (ω) ûiûi + εvi (ω) v̂iv̂i + εni (ω) n̂n̂, (2)

where we chose one of the principal axis of each material
to align normal to the slabs along n̂. We extend our
perturbation methods in [8] to incorporate asymmetry
in the polarization. We decompose

εi(ω) = εi(ω) + ∆εi(ω), (3)

where εi(ω) represents the uniaxial background

εi(ω) = ε⊥

i (ω) (ûiûi + v̂iv̂i) + εni (ω) n̂n̂ (4)
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FIG. 2. Upper panel: Principal components of the dielectric
tensors εi = diag(εxi , ε

y
i , ε

z
i ) of BP and 2D-P, calculated using

density functional theory (described in page 3). The imagi-
nary Matsubara frequency ζm is obtained after making the
Euclidean rotation; ωm = iζm = i2πmkBT/h̄. Components
εxi = εyi for both materials close to ζc ∼ 4×1015 rad/s. Lower
panel: Perturbative parameter βi for BP and 2D-P (shown
for all three faces of BP crystal).

for which a closed form solution for the Green dyadic can
be obtained. We define ε⊥

i (ω)=(εui (ω)+εvi (ω))/2 so that
the degree of anisotropy that characterizes the biaxial
nature of the material is completely captured inside

∆εi(ω) =

(
εui (ω)− εvi (ω)

2

)
(ûiûi − v̂iv̂i). (5)

This particular choice renders Tr∆εi(ω) = 0. The per-
turbative parameter in Eq. (1) can now be written as
βi(ω) = ∆εi(ω)/ε

⊥

i (ω), which implies εi(ω) = εi(ω)(1 +
βi(ω)). It is easy to find materials with small βi for all ω.
For example, for the plane of 2D-P and the corresponding
face of the BP crystal the magnitude of the static values
of the perturbative parameter, βi(0), are approximately
0.06 and 0.09, respectively (see Fig. 2).

We evaluate the contribution to the interaction energy
from the terms that are the first-order in the perturbative
parameter βi, separately, to be zero. Thus, the leading-
order contribution to the interaction energy at finite tem-
perature T is from the second-order term containing β1β2

E(2)(a, θ)=−
kBT cos 2θ

4π

∞∑

m=0

′β1β2

∫ ∞

0

k dkTr(R̃1R̃2)e
−2κa,

(6)
where kB is the Boltzmann constant, θ is the angle be-
tween the in-planar principal axes of the two materials
shown in the co-ordinate system in Fig. 1, and k is the
wave-vector perpendicular to n̂. The prime on the sum-
mation denotes that the zero frequency mode is taken
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with half-weight. We define κ =
√
k2 + ζ2m/c2, where

ζm is defined in the caption of Fig. 2. The expression
for the “reduced reflection” coefficient R̃i is given in the
supplemental material [9]. We highlight that an exact
expression for interaction energy between two biaxially
polarizable materials, that includes retardation, remains
an open problem–Barash’s result is for uniaxial materi-
als. Thus, our approximate expression for the interaction
energy in Eq. (6) in the perturbative parameter β1β2,
which is evaluated in the retarded limit, is a significant
progress for the analysis of the interaction between bi-
axial materials. The details of our perturbation theory,
which generalizes our earlier work [8], will be presented
elsewhere.

The leading-order contribution to the torque per unit
area on the dielectric slab is

T (2)(a, θ) = −
∂

∂θ
E(2)(a, θ), (7)

which replaces cos 2θ by 2 sin 2θ in Eq. (6). In the non-
retarded limit, when we take di → ∞ and set εv = εn,
we reproduce Barash’s uniaxial result in the correspond-
ing weak limit. The 2θ dependence is a signature of bi-
directional nature of fluctuation dependent polarizabil-
ities. The dependence of torque on a is of the form
1/a2 times a function of di/a, which is usually mono-
tonic. Here, we construct configurations of anisotropic
materials that not only break away from the monotonous
dependence on a but also change sign by carefully select-
ing configurations such that βi(iζc) = 0 for at least one
frequency. (Note that βi will approach 0 at high frequen-
cies.)

For two identical materials, the torque displays a
monotonic behavior as a function of a because β1β2 =
β2
1 ≥ 0 for all frequencies. However, for nonidentical ma-

terials, if β = 0 at a characteristic frequency ζc for one of
the interacting materials (or βi is zero for both the mate-
rials but at significantly different characteristic frequen-
cies), then the Matsubara frequency modes above and
below ζc will give contributions with opposite signs to the
torque. The cancellation between the positive and neg-
ative contributions to the torque summed over all Mat-
subara frequencies in Eq. (6) will decide the overall sign
of the torque at a fixed separation distance. The contri-
butions from the higher Matsubara frequencies dominate
at short separation distances while lower frequencies are
more important at larger separation distances. These
two competing effects create a scenario where the torque
between two materials can reverse its rotational sense as
a function of the separation distance. The sign-reversal
of the torque is a generic behavior for any set of mate-
rials with the aforementioned material properties and is
independent of the relative orientation θ.

The next-to-the-leading-order term T (4) in the expres-
sion for the torque will contain (β1β2)

2 and e−4κa. Thus,
this term is not only suppressed by the small magnitude
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FIG. 3. Schematics for choices of interacting media for BP.
We denote BP(XY) for the configuration when X-Y face of the
BP aligns perpendicular to n̂. Similarly, BP(XZ) and BP(ZY)

describe the configurations when X-Z and Y-Z faces of BP are
set perpendicular to the n̂, respectively.

of βi but also subdued exponentially compared to the
second-order term T (2). Thus, the inclusion of this term
cannot affect the sign-reversal behavior of the torque.

To illustrate the above mentioned change in the di-
rection of the torque, we use BP and 2D-P, which are
biaxially polarizable due to their puckered non-planar
honeycomb structures [10]. The optical properties of BP
and 2D-P are computed using the Vienna Ab-initio Sim-
ulation Package (VASP) [11]. The optB88-vdW func-
tional [12] is used for structural relaxation while the
revised Heyd-Scuseria-Ernzerhof (HSE) screened func-
tional [13] is used for the dielectric function calculations.
The computed band gap energies of BP and 2D-P are 0.38
and 1.52 eV, respectively, which are consistent with the
previously reported results [14].(See supplemental mate-
rial [9] for details.) The dielectric function data for black
phosphorus calculated using density functional theory are
comparable to the available low-frequency experimental
data [15]. The data for phosphorene are not available to
the best of our knowledge. (See supplemental material [9]
for details.) Figure 2 displays the dielectric tensor com-
ponents εx, εy, and εz, along the principal axes (x̂i, ŷi,
ẑ) of BP and 2D-P crystals as a function of ζm. The
components εx and εy of the dielectric function of BP
and 2D-P cross approximately at 4 × 1015 rad/s. The
BP crystal has three faces–each with a different degree
of anisotropy. In the Casimir-Lifshitz setup, shown in
the inset of Fig. 1, we have the choice to align different
faces perpendicular to n̂, as delineated in Fig. 3. The
perturbative parameters corresponding to the three ori-
entations of the BP crystal, and 2D-P, are presented in
the lower panel of Fig. 2. Note that β(XZ) and β(ZY) for
BP are never zero, which equips us with a suitable set of
dielectric function for one of the interacting materials to
test our theoretical predictions.

In the supplemental material [9], we show that the
leading-order perturbative result, applied to the interac-
tion between two uniaxial materials, excellently matches
well below 5% with the exact theory. Thus, emboldened
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changes its sense of rotation as a function of a.

by the remarkable performance of the leading-order re-
sult, we proceed to test our main prediction of the sign-
reversal of the torque. We evaluate the torque for the
four different combinations of 2D-P and BP(XY) inter-
acting with BP(XZ) and BP(ZY), which have a possibility
of showing sign-reversal according to Eqs. (6) and (7).
Our results for the leading-order torque as a function of
the separation distance a are presented in Fig. 4. All the
four cases show reversal in the direction of the torque at
short separation distances ranging from 20-50 nm with
the exception of interaction between 2D-P and BP(ZY)

in which the torque changes sign at a very short dis-
tance but then shows multiple extrema as a function of a.
This suggests that by manipulating the dielectric prop-
erties one could find multiple separation distances where
the torque acting between two anisotropic materials may
change its rotational sense for any arbitrary orientation
between their in-planar principal axes. The results pre-
sented in the figure are for θ = π/4. A different value of
the relative orientation θ will change the magnitude and
sign of the torque with a periodicity of sin 2θ.

Next, we investigate the scenario when the two inter-
acting media are identical. As mentioned earlier, the
torque is monotonic in this situation. Figure 5 shows the
leading-order torque as a function of a for the interaction
between two identical 2D-P in the left panel and between
two semi-infinite slabs of BP(XY) in the right panel. In
contrast to that of 2D materials, the magnitude of the
torque between thick media is bigger by one to two orders
of magnitudes. A similar monotonic behavior appears if
one of the materials is 2D-P and the other material is the
BP(XY), as βi = 0 for both the materials at very close
characteristic frequencies. Further, although the electro-
magnetic modes do not separate in biaxial systems, in
our perturbation theory we can identify contributions to
the torque from TE, TM, and a mixed mode, that de-
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tion distance a between two identical 2D-P layers (left panel)
and two identical semi-infinite BP slabs (right panel). We
show the TE, TM and mixed mode contributions, which have
different hierarchical order in the two cases.

pends on both TE and TM reflection coefficients defined
for the uniaxial background of Eq. (4). The contributions
from the TM mode to the torque dominates for small a
of about 10 nm, followed by the mixed mode, with TE
mode being negligible. All the modes begin to contribute
comparably at large a of about 100 nm, but keep their hi-
erarchical order for the case of interaction between two
2D-P layers. The interaction between two BP, on the
other hand, presents a curious feature where the mixed
mode over takes the TM mode at about 25 nm with TE
mode also crossing over near 100 nm. From a fundamen-
tal point of view, this difference indicates a non-additive
nature of the interlayer interaction in BP–also mentioned
in Ref. [16] in the context of interlayer binding energy.

Before closing our discussion, we qualitatively com-
ment on the feasibility of measuring the effects discussed
here. The experimental verification of the Casimir-
Lifshitz torque has remained elusive due to the small-
ness of the magnitude of the torque [17]. For a material
slab with cross-sectional area of 100µm2, the torque is
of the order of 10−20 Nm for BP and 2D-P, which is in
accordance with the other calculations reported in the
literature [4, 5, 18]. However, using an intervening liq-
uid medium have shown an appreciable change in the
magnitude of the torque [5, 19]. Other methods, like car-
rier injection to manipulate the dielectric functions, could
provide enhancement in the torque. Newer experimental
techniques as suggested in [20] could be explored. Our
primary motivation, here, is to highlight the distance de-
pendent sign-reversal in the Casimir-Lifshitz torque that
should be kept in mind in the quest for an experimen-
tal verification. One may verify the existence of the
torque, at least in principle, utilizing the sign-reversal
of the torque. Assume, for instance, that the two pla-
nar materials at their initial positions are illuminated by
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a laser beam from above, and the scattering pattern is
observed. With the change of the separation distance
between the slabs the torque will change its sense of ro-
tation leading to a reorientation of the principal axes.
Thus, the scattered radiation will have changed with the
change of the separation distance. At least a qualitative
change of the radiation pattern would be sufficient to
verify the existence of the torque. The effect is analogus
to Mie scattering from a dielectric sphere if subjected to
slight surface deformations.

In conclusion, non-separability of TE and TM modes
continues to be a hindrance in finding an exact solu-
tion for the torque between two biaxially anisotropic
materials–Barash’s solution in Ref. [3] was for a uniax-
ial material. However, we have developed a perturbative
method that overcomes this shortcoming to an excellent
accuracy. The change in the reversal of the torque high-
lighted here is expected to be prevalent in materials, and
is an open door for device engineering.
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