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We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss–Bonnet invariant

that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories

formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if

certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of

many narrow bands. We find evidence that scalarization can occur in neutron stars as well.

Introduction. Gravitational wave observations [1–7] allow

us to probe the structure of black holes (BHs) with unprece-

dented accuracy. Hence, they can reveal the existence of new

fundamental scalar fields [8, 9], provided that they leave an

imprint on BHs. However, no-hair theorems (see [10, 11] for

reviews) dictate that conventional scalar-tensor theories will

have the same stationary, asymptotically flat BH solutions as

general relativity (GR) [12–14]. In spherical symmetry [15]

and slow rotation [16, 17], this result extends to generalized

scalar-tensor theories, i.e. theories that exhibit derivative self-

interactions and derivative couplings between the scalar and

curvature invariants, provided that the scalar respects shift

symmetry.

One could still detect scalars in these theories through the

imprint they leave when they are excited [18, 19]. One can

also circumvent no-hair theorems by violating some of their

assumptions [20–23]. No-hair theorems also help single out

particularly interesting theories that have hairy BHs. A well-

studied example is the action

S =
1

2

∫

d4x
√−g

[

R − 1

2
∇αϕ∇αϕ + f (ϕ)G

]

+ Sm[gµν, ψ] ,

(1)

where G ≡ RµνρσRµνρσ − 4RµνRµν
+ R2 is the Gauss-Bonnet

invariant. We use geometrical units with c = 8πG = 1 and

the mostly plus metric signature. The scalar field ϕ is coupled

to G , which has dimensions of length−4 (≡ L−4), through a

function f (ϕ), with dimensions L2. The matter fields ψ are

minimally coupled to the metric gµν through the action Sm.

We will refer to this class of theories as scalar-Gauss-Bonnet

(sGB) gravity. When f is exponential the theory is well-known

to admit hairy BHs [24], whereas a linear f yields the only

shift-symmetric theory with second-order field equations that

exhibits BH hair [16, 17] (despite the no-hair theorem of [15]).

The main purpose of this paper is to demonstrate that a new

subclass of theories, contained in (1), exhibits a particularly

interesting phenomenon: BH spontaneous scalarization. As

we demonstrate below, this subclass of theories generically

admits solutions where the scalar field is constant and the

metric satisfies Einstein’s equations. However, under certain

conditions these solutions are unstable, and solutions where

the scalar field in nontrivial are dynamically preferred. This

leads to hairy BHs only when the BH mass lies within certain

ranges. Compact stars in these theories also exhibit sponta-

neous scalarization. The mechanism resembles that proposed

by Damour and Esposito-Farèse [25], where there is a cou-

pling between ϕ and the trace of the stress-energy tensor, T .

However, there are important differences – most notably the

fact that the effect is present for BHs as well.

A no-hair theorem in sGB and how to evade it. We start by

identifying the class of theories in question. Varying (1) with

respect to ϕ and gµν yields

�ϕ = − f,ϕG , (2a)

Rµν −
1

2
gµνR = Tµν . (2b)

Here Tµν is the sum of the matter stress-energy tensor Tm
µν ≡

−(2/√−g)(δSm/δgµν), plus a contribution coming from the

variation of the ϕ-dependent part of the action with respect to

the metric (see e.g. [24]).

Eq. (2a) does not admit ϕ = constant solutions, unless

f,ϕ(ϕ0) = 0 , (3)

for some constant ϕ0. We consider Eq. (3) as an existence

condition for GR solutions and focus on theories that satisfy

it. This excludes the widely studied class of dilatonic theories

where f ∼ exp(ϕ) and the shift-symmetric f ∼ ϕ theory

discussed above [16, 17, 24].

Focus now on BH solutions that are asymptotically flat and

stationary. These admit a Killing vector ξµ that is timelike at

infinity and acts as a generator of the event horizon. Assuming

that ϕ respects stationarity, ξµ∇µϕ = 0. Multiplying Eq. (2a)

by f,ϕ and integrating over a volume V yields

∫

V

d4x
√−g

[

f,ϕ�ϕ + f 2
,ϕ(ϕ)G

]

= 0 . (4)
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Integrating by parts and using the divergence theorem, we

obtain
∫

V

d4x
√−g

[

f,ϕϕ∇µϕ∇µϕ − f 2
,ϕ(ϕ)G

]

=

∫

∂V

d3x
√

|h| f,ϕnµ∇µϕ , (5)

where ∂V is the boundary of V and nµ is the normal to the

boundary. We choose V such that it is bounded by the BH

horizon, two partial Cauchy surfaces, and spatial infinity. The

contribution of the boundary term on the right-hand side van-

ishes. The horizon contribution vanishes by symmetry, as

the normal to the horizon is ξµ and the stationarity condition

holds; the contribution of the boundary at infinity vanishes be-

cause of asymptotic flatness. The contributions of the Cauchy

surfaces exactly cancel each other, as they can be generated by

an isometry. Hence the integral in the first line of Eq. (5) must

vanish as well. With our signature, ∇µϕ∇µϕ is positive in the

BH exterior. Indeed, whenever

f,ϕϕ G < 0 (6)

the whole integrand is sign-definite and must vanish at every

point in V . The same conditions imply that the two terms

of the integrand have the same sign and hence must vanish

separately. This can only be achieved if ϕ = ϕ0.

The above can be considered as a no-hair theorem for sta-

tionary, asymptotically flat BHs in theories that satisfy the

conditions of Eqs. (3) and (6). The former is clearly an exis-

tence condition for GR solutions. To understand the latter, it

is helpful to linearize Eq. (2a) around ϕ = ϕ0:

[

� + f,ϕϕ(ϕ0)G
]

δϕ = 0 . (7)

The term − f,ϕϕ G acts as an effective mass m2
eff

for the pertur-

bations δϕ. Theories for which this effective mass is negative

can evade the theorem above. There is a direct analogy be-

tween the proof presented here and the no-hair theorem proof

of [14] for scalar-tensor theories with self-interactions.

This no-hair theorem identifies theories that can lead to in-

teresting phenomenology in the strong-field regime: they must

satisfy condition (3) but violate condition (6). A negative ef-

fective mass is expected to trigger a tachyonic instability,which

can lead to the development of scalar hair. This is analogous

to spontaneous scalarization for neutron stars (NSs) in standard

scalar-tensor theories [25]. Scalarization was also shown to

be possible for BHs if they are surrounded by matter [20, 21].

Quadratic scalar-Gauss-Bonnet gravity. The simplest cou-

pling function which satisfies Eq. (3) and can violate Eq. (6)

is

f = ηϕ2/8 , (8)

where η is a parameter with dimensions L2. Hereafter

we will focus on this theory, and we will call it quadratic

sGB (qsGB) gravity. If f satisfies the condition (3) and

is well behaved around ϕ0, then it admits the expansion

f (ϕ) = f (ϕ0) + f,ϕϕ(ϕ0)(ϕ − ϕ0)2/2 + . . . The first term in

this expansion does not contribute to the field equations be-

cause G is a total divergence. Moreover, the kinetic term of the

action is shift-symmetric. So, the field redefinition ϕ → ϕ−ϕ0

can reduce the quadratic expansion of any theory to qsGB.

qsGB gravity has several other interesting features. It leads

to a field equation for ϕ that is linear in ϕ. This will be partic-

ularly convenient when studying the zero-backreaction limit

below. Additionally, the theory exhibits ϕ → −ϕ symmetry.

This is important in a field theory context. It prevents the

term ϕG , which inevitably leads to BH hair [16, 17], from

appearing in the action. Note also that ϕ does not need to play

any role in late-time cosmology, hence current weak-field and

gravitational wave constraints are very weak [26–29].

We focus on spherically symmetric solutions that describe

either BHs or compact stars and demonstrate that spontaneous

scalarization can take place. We first consider the scalar on a

GR background and show that there is an instability associated

to spontaneous scalarization. We then verify our results by

looking at non-perturbative solutions. We call the solution

with a non-trivial scalar configuration the scalarized solution.

We focus on solutions that share the same asymptotics with

the GR solution, including the asymptotic value of ϕ, ϕ∞.

For simplicity, we impose ϕ∞ = 0, but this choice does not

crucially affect our results.

Tachyonic instability: a zero-backreaction analysis. We

first consider the limit where backreaction from the metric can

be neglected, i.e. we focus on the scalar field equation, Eq. (7),

on a fixed background. The effective mass of the perturbation

δϕ is m2
eff
= − fϕϕG = −η G /4, therefore tachyonic instability

should be possible for η > 0. On a static, spherically symmet-

ric background spacetime ds2
= −a(r)dt2

+ b(r)dr2
+ r2dΩ,

Eq. (7) can be written as

− ∂2σ

∂t2
+

∂2σ

∂r2
∗
= Veff σ , (9)

where δϕ = σ(t, r)Yℓm(θ, φ)/r, Yℓm are standard spherical har-

monics, dr/dr∗ ≡
√

a/b and the effective potential Veff is:

Veff ≡ a

[

ℓ(ℓ + 1)
r2

+

1

2ra

d(ab−1)
dr

− η G

4

]

. (10)

In order to find whether scalarized solutions of the decou-

pled field equation (9) exist, we have performed a numer-

ical integration, assuming a Schwarzschild background and

monopolar perturbations. We have found that the equation ad-

mits a non-trivial solution with ϕ∞ = 0 for a discrete spectrum

of values of the coupling parameter (η/M2
= 2.902, 19.50,

50.93, . . . ). These results are summarized in Fig. 1, where we

show the quantity dσ/dr computed at some extraction radius

rmax ≫ M (namely rmax = 200 M), as a function of η/M2.

For r ≫ M, δϕ ∼ δϕ∞ +O(r−1), thus δϕ∞ ∼ dσ/dr(r → ∞).
The scalarized solutions correspond to the cusps in the top

panel of Fig. 1. These solutions can be characterized by an

order number n = 0, 1, . . . , which is also the number of nodes

of the radial profile of δϕ(r) (bottom-right panel of Fig. 1).
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FIG. 1. Scalar field in the decoupling limit. Results of the numerical

integration of the decoupled scalar field equation (9), assuming ℓ = 0

and a Schwarzschild background. Top panel: asymptotic value of the

scalar field as a function of η/M2 . Cusps correspond to scalarized

solutions. Bottom-left panel: effective potential Veff for η/M2
= 0

and 5. In the latter case Veff develops a negative region and it can

support bound states. Bottom-right panel: radial profiles of δϕ for

the first three scalarized solutions, corresponding to η/M2
= 2.902,

19.50 and 50.93. These profiles have 0, 1 and 2 nodes, respectively.

Scalarized black holes in qsGB gravity. We now consider

BH solutions obtained by integrating the full set of equa-

tions (2a) and (2b). We search for static, spherically sym-

metric solutions, i.e. a = a(r), b = b(r), ϕ = ϕ(r). We define

Γ = log a, Λ = log b, as in [24]. The field equations can be

cast as three coupled ordinary differential equations for Γ, Λ

and ϕ. Since these equations are not particularly illuminating,

we do not present them here.

The equation for Λ can be integrated algebraically [16, 17,

24]:

eΛ =
−A + δ

√
A2 − 4B

2
, δ = ±1 , (11)

where A = (1/4)r2ϕ′2−(r+ηϕϕ′/2)Γ′−1 and B = (3/2)Γ′ϕ′ϕ.

In BH solutions exp(−Λ), exp(Γ) → ∞ at the event horizon

rh, and this implies δ = 1 [24]. Replacing Eq. (11) in the

remaining equations,we are left with two differential equations

for Γ and ϕ. A near-horizon expansion of the field equations

shows that ϕ′′
h
= ϕ′′(r = rh) is finite if

ϕ′h =
rh

ηϕh

(

−1 + ξ

√

1 − 6η2ϕ2
h
/r4

h

)

, (12)

where ξ = ±1. The ξ = −1 branch does not result in a BH

solution, as discussed in [24] for the exponential coupling.

Therefore, regularity on the horizon requires

r4
h − 6η2ϕ2

h ≥ 0 . (13)

Eq. (13) defines a region in the (rh, ϕh)–plane within which BH

solutions with a regular (real) scalar field configuration exist.

The value of the scalar field at the horizon is bound in

the range 0 ≤ ϕh ≤ ϕmax
h
= r2

h
/(
√

6η). We do not consider
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FIG. 2. Spontaneous scalarization of black holes. Left: the regions

in the η − M (in solar mass units) space where scalarized BHs exist.

The solutions belonging to each band are characterized by the number

of nodes of the scalar field radial profile. We only show the first three

scalarization regions, but our numerical analysis suggests an infinite

number of them. Top-right: the scalar field profiles for sample BH

solutions in each of the first three bands. Bottom-right: normalized

scalar charge Q/M as a function of η/M2 . The most charged BHs

belong to the n = 0 band.

solutions with ϕh < 0 because qsGB gravity is invariant under

ϕ → −ϕ. The field equations are invariant under the rescalings

rh → rh/l, M → M/l, η → η/l2, corresponding to a freedom

in choosing length units. BH solutions are then characterized

by dimensionless quantities such as η/M2 and η/r2
h
.

For each value of η/M2 we have numerically solved the

field equations, with ϕh in the range [0, ϕmax] and the other

boundary conditions fixed from the requirement of regularity

at the horizon. We have then extracted the scalar quantities

characterizing the solution – the mass M, the scalar charge

Q, and the asymptotic value of the scalar field ϕ∞ – from the

asymptotic expansions [17, 24, 30]:

eΓ = 1 − 2M/r + Q2M/(12r2) , (14)

ϕ = ϕ0 +Q/r +QM/r2
+ (32QM2 − Q3)/(24r3) . (15)

While the Schwarzschild solution (ϕh = 0, ϕ0 = 0) is allowed

for any value of η, a solution with ϕh , 0, ϕ∞ = 0 only ex-

ists when η/M2 belongs to a set of scalarization bands, i.e.

[2.53, 2.89], [17.86,19.50], [47.90, 50.92], etc. The right-end

values of these bands correspond to the eigenvalues of η/M2

found by solving the linear equation of the scalar field on a

fixed background. The scalarization bands in η/M2 corre-

spond to regions bounded by parabolas in the η − M plane

(shadowed regions in the left panel of Fig. 2). The scalar field

profiles of these solutions have n = 0, 1, . . . nodes (top-right

panel of Fig. 2), corresponding to the order number of the

scalarization band. A similar ladder of excited states was ob-

served for scalarized NSs in scalar-tensor theory [31, 32]. The

normalized scalar charge1 Q/M of these solutions is shown in

1 In other theories with a Gauss–Bonnet coupling the scalar charge and the
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FIG. 3. Tachyonic instability in a stellar background. Left: profile

of the Gauss-Bonnet invariant (top) and of the effective potential

(bottom), inside a M = 1.4 M⊙ NS with the SLy4 EoS, assuming

|η/M2 | = 100/(1.4)2 ∼ 51. The regions where the effective potential

becomes negative are shaded. Right: values of η/M2 for which the

first bound state forms as a function of the compactness M/R.

the bottom-right panel of Fig. 2 as a function of η/M2. This

plot shows the values of η admitting a scalarized solution for

each value of the BH mass.

Spontaneous scalarization and neutron stars. Let us now

consider NSs in qsGB gravity. The Gauss-Bonnet invariant

for a static, spherically symmetric solution of the Tolman-

Oppenheimer-Volkoff (TOV) equations [33] is

G =
48m2

r6
− 128π(m + 2πr3p)ε

r3
, (16)

where m = r(1 − 1/b)/2 is the mass function, and p and ε are

the pressure and energy density inside the star, respectively.

At the surface r = R, ε vanishes and (16) matches smoothly

the Schwarzschild value G = 48M2/r6, with M ≡ m(R) being

the star’s mass. We solve the TOV equations for a “canoni-

cal” NS model with M = 1.4 M⊙ , assuming the SLy4 [34]

equation of state (EoS). The Gauss-Bonnet invariant is mostly

negative throughout the interior of the star (see Fig. 3, top-left

panel); it is only positive near the surface of the star, and in

the exterior. This suggests that if η < 0, the scalar field can

develop a tachyonic instability inside the star, while if η > 0

the instability is triggered in the outer region/exterior of the

star.

In the bottom-left panel of Fig. 3 we show the effective

potential Veff for the “canonical” NS model discussed above,

with η = ±100 M2
⊙ . As expected, there are (shaded) regions

where Veff becomes negative. These regions are inside the star

when η < 0, and outside the star when η > 0.

Solving Eq. (9) in the NS background,we find that scalarized

solutions exist for both positive and negative values of η. In the

asymptotic value of the coupling are related by Q/M = 2 f,ϕ(ϕ∞)/M2,

and this can lead to a bound on the coupling constant (e.g. [16, 24, 30]). It

should be noted that there is no such relation for qsGB because f,ϕ(ϕ∞) = 0.

right panel of Fig. 3 we show the values of η/M2 corresponding

to the lowest-lying scalarized solutions with η > 0 and η < 0,

as a function of the NS compactness. Note that scalarization

occurs for lower values of |η/M2 | when the coupling constant

is negative than when it is positive.

As in the BH case, we expect these results to translate into

the existence of scalarized NSs at the fully nonlinear level [35],

i.e. by integrating the modified TOV equations obtained from

Eqs. (2a)-(2b) assuming a perfect fluid for matter. Fully non-

linear stellar models will be explored in forthcoming work.

Conclusions. We have identified and studied a subclass

of scalar-tensor theories with a coupling between the scalar

and the Gauss–Bonnet invariant that appears to exhibit spon-

taneous scalarization for both BHs and NSs. Interestingly, BH

scalarization does not have a single threshold. Instead, for a

given value of the coupling parameter η hairy BHs exist when

their mass lies in one of many narrow bands. Our exploration

for NSs strongly suggests that scalarization can take place for

both positive and negative values of η. However, the effect

appears to be stronger for negative values of η, for which BH

scalarization cannot occur. A full numerical study of NSs in

these theories is in progress and will be reported elsewhere. It

would be interesting to examine more closely the conditions

under which spontaneous scalarization can occur and its im-

plications for the structure of astrophysical BHs and compact

stars, especially in binary systems of interest for gravitational

wave detectors. A full study of the two-body problem in qsGB

is beyond the scope of this paper, but we anticipate interesting

phenomenology already at the post-Newtonian level [36].

Binary systems containing scalarized BHs and NSs (which

have nonzero scalar charge Q) should emit dipolar scalar radi-

ation. However, in contrast with dilatonic and shift-symmetric

theories, where Q , 0 for all BHs, in our case scalarization

only happens – and therefore dipolar radiation would be emit-

ted – only in certain BH mass ranges (for a fixed coupling

η). NSs in the shift-symmetric theory have Q = 0 [37, 38],

thus evading the stringent experimental constraints on dipolar

radiation emission from binary pulsars [39]. In qsGB grav-

ity, if one of the NSs in the binary happens to be scalarized,

scalar radiation would be emitted, leaving a smoking gun of the

presence of the scalar field in the orbital dynamics. It would

also be interesting to investigate the strong field dynamics

of this theory. Apart from scalar-tensor theories [40–43],

the application of numerical relativity simulations to other

theories of gravity is still in its infancy [44–47]. To per-

form numerical simulations one must inevitably address

the issue of well-posedness [48, 49], which remains an open

problem beyond the scope of our paper. By pointing out the

existence of potentially interesting phenomenology in qsGB

we hope to motivate further work in this direction. Finally,

it might also be worth extending our results to more general

couplings between the scalar field and the Gauss–Bonnet in-

variant.

Note. During the completion of this manuscript, a preprint

studying a similar model for BHs appeared on the arXiv [50].

Acknowledgments. We thank Andrea Maselli,



5

Caio F. B. Macedo, Helvi Witek, Paolo Pani, Kent Yagi

and Nicolás Yunes for numerous discussions. This work

was supported by the H2020-MSCA-RISE-2015 Grant No.

StronGrHEP-690904 and by the COST action CA16104

“GWverse”. H.O.S was supported by NSF Grant No.

PHY-1607130 and NASA grants NNX16AB98G and

80NSSC17M0041. J.S. was supported by funds provided

to the Center for Particle Cosmology by the University

of Pennsylvania. E.B. was supported by NSF Grants No.

PHY-1607130 and AST-1716715. T.P.S. received funding

from the European Research Council under the European

Union’s Seventh Framework Programme (FP7/2007-2013)

/ ERC grant agreement n. 306425 “Challenging General

Relativity”. H.O.S also thanks the University of Nottingham

for hospitality.

∗ hector.okadadasilva@montana.edu
† sakstein@physics.upenn.edu
‡ leonardo.gualtieri@roma1.infn.it
§ thomas.sotiriou@nottingham.ac.uk
¶ eberti@olemiss.edu

[1] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett.

116, 061102 (2016), arXiv:1602.03837 [gr-qc].

[2] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett.

116, 241103 (2016), arXiv:1606.04855 [gr-qc].

[3] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. X6,

041015 (2016), arXiv:1606.04856 [gr-qc].

[4] B. P. Abbott et al. (VIRGO, LIGO Scientific), Phys. Rev. Lett.

118, 221101 (2017), arXiv:1706.01812 [gr-qc].

[5] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett.

119, 141101 (2017), arXiv:1709.09660 [gr-qc].

[6] B. P. Abbott et al. (Virgo, LIGO Scientific), Astrophys. J. 851,

L35 (2017), arXiv:1711.05578 [astro-ph.HE].

[7] B. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 119,

161101 (2017), arXiv:1710.05832 [gr-qc].

[8] E. Berti et al., Class. Quant. Grav. 32, 243001 (2015),

arXiv:1501.07274 [gr-qc].

[9] T. P. Sotiriou, Proceedings of the 7th Aegean Summer School:

Beyond Einstein’s theory of gravity. Modifications of Einstein’s

Theory of Gravity at Large Distances. Paros, Greece, September

23-28, 2013, Lect. Notes Phys. 892, 3 (2015), arXiv:1404.2955

[gr-qc].

[10] T. P. Sotiriou, Class. Quant. Grav. 32, 214002 (2015),

arXiv:1505.00248 [gr-qc].

[11] C. A. R. Herdeiro and E. Radu, Proceedings, 7th Black Holes

Workshop 2014: Aveiro, Portugal, December 18-19, 2014, Int.

J. Mod. Phys. D24, 1542014 (2015), arXiv:1504.08209 [gr-qc].

[12] S. W. Hawking, Commun. Math. Phys. 25, 167 (1972).

[13] J. D. Bekenstein, Phys. Rev. D5, 1239 (1972).

[14] T. P. Sotiriou and V. Faraoni, Phys. Rev. Lett. 108, 081103

(2012), arXiv:1109.6324 [gr-qc].

[15] L. Hui and A. Nicolis, Phys. Rev. Lett. 110, 241104 (2013),

arXiv:1202.1296 [hep-th].

[16] T. P. Sotiriou and S.-Y. Zhou, Phys. Rev. Lett. 112, 251102

(2014), arXiv:1312.3622 [gr-qc].

[17] T. P. Sotiriou and S.-Y. Zhou, Phys. Rev. D90, 124063 (2014),

arXiv:1408.1698 [gr-qc].

[18] E. Barausse and T. P. Sotiriou, Phys. Rev. Lett. 101, 099001

(2008), arXiv:0803.3433 [gr-qc].

[19] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,

and J. March-Russell, Phys. Rev. D81, 123530 (2010),

arXiv:0905.4720 [hep-th].

[20] V. Cardoso, I. P. Carucci, P. Pani, and T. P. Sotiriou, Phys. Rev.

Lett. 111, 111101 (2013), arXiv:1308.6587 [gr-qc].

[21] V. Cardoso, I. P. Carucci, P. Pani, and T. P. Sotiriou, Phys. Rev.

D88, 044056 (2013), arXiv:1305.6936 [gr-qc].

[22] E. Babichev and C. Charmousis, JHEP 08, 106 (2014),

arXiv:1312.3204 [gr-qc].

[23] C. A. R. Herdeiro and E. Radu, Phys. Rev. Lett. 112, 221101

(2014), arXiv:1403.2757 [gr-qc].

[24] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E. Win-

stanley, Phys. Rev. D54, 5049 (1996), arXiv:hep-th/9511071

[hep-th].

[25] T. Damour and G. Esposito-Farèse, Phys.Rev.Lett. 70, 2220

(1993).

[26] G. Esposito-Farese, Phi in the sky: The quest for cosmolog-

ical scalar fields. Proceedings, Workshop, Porto, Portugal,

July 8-10, 2004, AIP Conf. Proc. 736, 35 (2004), [,35(2004)],

arXiv:gr-qc/0409081 [gr-qc].

[27] T. P. Sotiriou and E. Barausse, Phys. Rev. D75, 084007 (2007),

arXiv:gr-qc/0612065 [gr-qc].

[28] J. Sakstein, B. Jain, J. S. Heyl, and L. Hui, Astrophys. J. 844,

L14 (2017), arXiv:1704.02425 [astro-ph.CO].

[29] J. Sakstein and B. Jain, (2017), arXiv:1710.05893 [as-

tro-ph.CO].

[30] S. Mignemi and N. R. Stewart, Phys. Rev. D47, 5259 (1993),

arXiv:hep-th/9212146 [hep-th].

[31] W. C. C. Lima, G. E. A. Matsas, and D. A. T. Vanzella, Phys.

Rev. Lett. 105, 151102 (2010), arXiv:1009.1771 [gr-qc].

[32] P. Pani, V. Cardoso, E. Berti, J. Read, and M. Salgado, Phys.

Rev. D83, 081501 (2011), arXiv:1012.1343 [gr-qc].

[33] B. K. Harrison, K. S. Thorne, M. Wakano, and J. A. Wheeler,

Gravitation Theory and Gravitational Collapse, Chicago: Uni-

versity of Chicago Press (1965).

[34] F. Douchin and P. Haensel, Astron. Astrophys. 380, 151 (2001),

arXiv:astro-ph/0111092 [astro-ph].

[35] P. Pani, E. Berti, V. Cardoso, and J. Read, Phys. Rev. D84,

104035 (2011), arXiv:1109.0928 [gr-qc].

[36] K. Yagi, L. C. Stein, N. Yunes, and T. Tanaka, Phys. Rev. D85,

064022 (2012), [Erratum: Phys. Rev.D93,no.2,029902(2016)],

arXiv:1110.5950 [gr-qc].

[37] E. Barausse and K. Yagi, Phys. Rev. Lett. 115, 211105 (2015),

arXiv:1509.04539 [gr-qc].

[38] K. Yagi, L. C. Stein, and N. Yunes, Phys. Rev. D93, 024010

(2016), arXiv:1510.02152 [gr-qc].

[39] P. C. Freire, N. Wex, G. Esposito-Farèse, J. P. Verbiest,

M. Bailes, et al., Mon. Not. Roy. Astron. Soc. 423, 3328 (2012),

arXiv:1205.1450 [astro-ph.GA].

[40] E. Barausse, C. Palenzuela, M. Ponce, and L. Lehner, Phys.

Rev. D87, 081506 (2013), arXiv:1212.5053 [gr-qc].

[41] E. Berti, V. Cardoso, L. Gualtieri, M. Horbatsch, and U. Sper-

hake, Phys. Rev. D87, 124020 (2013), arXiv:1304.2836 [gr-qc].

[42] M. Shibata, K. Taniguchi, H. Okawa, and A. Buonanno, Phys.

Rev. D89, 084005 (2014), arXiv:1310.0627 [gr-qc].

[43] C. Palenzuela, E. Barausse, M. Ponce, and L. Lehner, Phys.

Rev. D89, 044024 (2014), arXiv:1310.4481 [gr-qc].

[44] R. Benkel, T. P. Sotiriou, and H. Witek, Phys. Rev. D94, 121503

(2016), arXiv:1612.08184 [gr-qc].

[45] R. Benkel, T. P. Sotiriou, and H. Witek, Class. Quant. Grav. 34,

064001 (2017), arXiv:1610.09168 [gr-qc].

[46] M. Okounkova, L. C. Stein, M. A. Scheel, and D. A. Hemberger,

Phys. Rev. D96, 044020 (2017), arXiv:1705.07924 [gr-qc].

mailto:hector.okadadasilva@montana.edu
mailto:sakstein@physics.upenn.edu
mailto:leonardo.gualtieri@roma1.infn.it
mailto:thomas.sotiriou@nottingham.ac.uk
mailto:eberti@olemiss.edu
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
http://dx.doi.org/10.1103/PhysRevLett.116.241103
http://arxiv.org/abs/1606.04855
http://dx.doi.org/10.1103/PhysRevX.6.041015
http://arxiv.org/abs/1606.04856
http://dx.doi.org/10.1103/PhysRevLett.118.221101
http://arxiv.org/abs/1706.01812
http://dx.doi.org/10.1103/PhysRevLett.119.141101
http://arxiv.org/abs/1709.09660
http://dx.doi.org/10.3847/2041-8213/aa9f0c
http://arxiv.org/abs/1711.05578
http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://arxiv.org/abs/1710.05832
http://dx.doi.org/10.1088/0264-9381/32/24/243001
http://arxiv.org/abs/1501.07274
http://dx.doi.org/ 10.1007/978-3-319-10070-8_1
http://arxiv.org/abs/1404.2955
http://dx.doi.org/10.1088/0264-9381/32/21/214002
http://arxiv.org/abs/1505.00248
http://dx.doi.org/10.1142/S0218271815420146
http://arxiv.org/abs/1504.08209
http://dx.doi.org/10.1007/BF01877518
http://dx.doi.org/10.1103/PhysRevD.5.1239
http://dx.doi.org/10.1103/PhysRevLett.108.081103
http://arxiv.org/abs/1109.6324
http://dx.doi.org/10.1103/PhysRevLett.110.241104
http://arxiv.org/abs/1202.1296
http://dx.doi.org/10.1103/PhysRevLett.112.251102
http://arxiv.org/abs/1312.3622
http://dx.doi.org/10.1103/PhysRevD.90.124063
http://arxiv.org/abs/1408.1698
http://dx.doi.org/10.1103/PhysRevLett.101.099001
http://arxiv.org/abs/0803.3433
http://dx.doi.org/10.1103/PhysRevD.81.123530
http://arxiv.org/abs/0905.4720
http://dx.doi.org/10.1103/PhysRevLett.111.111101
http://arxiv.org/abs/1308.6587
http://dx.doi.org/10.1103/PhysRevD.88.044056
http://arxiv.org/abs/1305.6936
http://dx.doi.org/10.1007/JHEP08(2014)106
http://arxiv.org/abs/1312.3204
http://dx.doi.org/10.1103/PhysRevLett.112.221101
http://arxiv.org/abs/1403.2757
http://dx.doi.org/10.1103/PhysRevD.54.5049
http://arxiv.org/abs/hep-th/9511071
http://dx.doi.org/10.1103/PhysRevLett.70.2220
http://dx.doi.org/ 10.1063/1.1835173
http://arxiv.org/abs/gr-qc/0409081
http://dx.doi.org/10.1103/PhysRevD.75.084007
http://arxiv.org/abs/gr-qc/0612065
http://dx.doi.org/ 10.3847/2041-8213/aa7e26
http://arxiv.org/abs/1704.02425
http://arxiv.org/abs/1710.05893
http://dx.doi.org/10.1103/PhysRevD.47.5259
http://arxiv.org/abs/hep-th/9212146
http://dx.doi.org/10.1103/PhysRevLett.105.151102
http://arxiv.org/abs/1009.1771
http://dx.doi.org/ 10.1103/PhysRevD.83.081501
http://arxiv.org/abs/1012.1343
http://dx.doi.org/10.1051/0004-6361:20011402
http://arxiv.org/abs/astro-ph/0111092
http://dx.doi.org/ 10.1103/PhysRevD.84.104035
http://arxiv.org/abs/1109.0928
http://dx.doi.org/ 10.1103/PhysRevD.93.029902, 10.1103/PhysRevD.85.064022
http://arxiv.org/abs/1110.5950
http://dx.doi.org/10.1103/PhysRevLett.115.211105
http://arxiv.org/abs/1509.04539
http://dx.doi.org/10.1103/PhysRevD.93.024010
http://arxiv.org/abs/1510.02152
http://dx.doi.org/10.1111/j.1365-2966.2012.21253.x
http://arxiv.org/abs/1205.1450
http://dx.doi.org/10.1103/PhysRevD.87.081506
http://arxiv.org/abs/1212.5053
http://dx.doi.org/ 10.1103/PhysRevD.87.124020
http://arxiv.org/abs/1304.2836
http://dx.doi.org/ 10.1103/PhysRevD.89.084005
http://arxiv.org/abs/1310.0627
http://dx.doi.org/10.1103/PhysRevD.89.044024
http://arxiv.org/abs/1310.4481
http://dx.doi.org/10.1103/PhysRevD.94.121503
http://arxiv.org/abs/1612.08184
http://dx.doi.org/10.1088/1361-6382/aa5ce7
http://arxiv.org/abs/1610.09168
http://dx.doi.org/10.1103/PhysRevD.96.044020
http://arxiv.org/abs/1705.07924


6

[47] E. W. Hirschmann, L. Lehner, S. L. Liebling, and C. Palenzuela,

(2017), arXiv:1706.09875 [gr-qc].

[48] G. Papallo and H. S. Reall, Phys. Rev. D96, 044019 (2017),

arXiv:1705.04370 [gr-qc].

[49] J. Cayuso, N. Ortiz, and L. Lehner, Phys. Rev. D96, 084043

(2017), arXiv:1706.07421 [gr-qc].

[50] D. D. Doneva and S. S. Yazadjiev, (2017), arXiv:1711.01187

[gr-qc].

http://arxiv.org/abs/1706.09875
http://dx.doi.org/10.1103/PhysRevD.96.044019
http://arxiv.org/abs/1705.04370
http://dx.doi.org/10.1103/PhysRevD.96.084043
http://arxiv.org/abs/1706.07421
http://arxiv.org/abs/1711.01187

