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The entanglement properties of random quantum states or dynamics are important to the study
of a broad spectrum of disciplines of physics, ranging from quantum information to high energy
and many-body physics. This work investigates the interplay between the degrees of entanglement
and randomness in pure states and unitary channels. We reveal strong connections between designs
(distributions of states or unitaries that match certain moments of the uniform Haar measure) and
generalized entropies (entropic functions that depend on certain powers of the density operator),
by showing that Rényi entanglement entropies averaged over designs of the same order are almost
maximal. This strengthens the celebrated Page’s theorem. Moreover, we find that designs of an
order that is logarithmic in the dimension maximize all Rényi entanglement entropies, and so are
completely random in terms of the entanglement spectrum. Our results relate the behaviors of
Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the
degree of randomness, and suggest a generalization of the fast scrambling conjecture.

Introduction. The interplay between entanglement
and randomness plays important roles in many areas of
physics. A particular notion of wide interest is “scram-
bling,” which essentially describes the phenomenon that
initially localized quantum information spreads through-
out the entire system via global entanglement, so that
the state of the system is effectively randomized, and the
information is lost from the perspective of any local ob-
server. The concept of scrambling originates from the
study of black holes and quantum gravity [1–4], and sim-
ilar mechanisms also underlie many other key concepts in
physics, such as quantum chaos [5–7], quantum thermal-
ization [8, 9], quantum data hiding [10, 11]. The entan-
glement properties of random or pseudorandom quantum
states and channels can illuminate such phenomena, and
are fundamental to relevant studies.

It has long been noted that a random state is typically
highly entangled [12, 13]. This observation is formalized
by the Page’s theorem [1, 14–16], which states that the
expected von Neumann entropy of small subsystems of
a completely random state (drawn from the Haar mea-
sure) is very close to the maximum. Similar observations
for the entanglement in random unitary channels are re-
cently made in [7]. However, such results are not “tight”
from the perspective of complexity. On the one hand,
the complexity of Haar randomness is high: the num-
ber of local gates needed to even approximate the Haar
distribution grows exponentially in the number of qubits
[17]. On the other hand, however, pseudorandom distri-
butions with low complexity [18–21] are sufficient to ac-
quire the Page-like entanglement property. That is, there
is a significant complexity gap between complete random-
ness and large entanglement entropy. In dynamical sce-
narios, this gap corresponds to a substantial but poorly
understood regime beyond scrambling, chaos and ther-

malization, where the randomness and complexity of the
system can keep growing. Indeed, the common character-
istics of information scrambling, such as global entangle-
ment [2, 7], remote signaling [3], local indistinguishability
[22], do not need nor imply complete randomization, and
there is little knowledge about the physics of later times.

To fill this gap, we consider more stringent entangle-
ment measures. The study is also extended to unitary
channels via the Choi isomorphism. More specifically,
we employ various techniques from representation theory,
random matrix theory, combinatorics and Weingarten
calculus to analytically study the generalized entangle-
ment entropies (which depend on higher powers of the
reduced density operator) of random and pseudorandom
states and unitaries. A key collective finding is that the
Rényi-α entanglement entropy averaged over α-designs
is almost maximal, where α-designs stand for evenly dis-
tributed ensembles of states or unitaries that mimic the
first α moments of the Haar measure, or are indistin-
guishable from the Haar measure by α queries in anal-
ogy to α-universal hash functions in classical computer
science. Namely, designs represent finite-degree approx-
imations of the truly random distribution on states or
unitaries, which are of great interest in quantum infor-
mation. This result links the order of entanglement en-
tropies and that of designs, and closes the complexity
gap in Page-like theorems. It also suggests Rényi en-
tanglement entropies as diagnostics of the randomness
complexity of corresponding designs in scrambling, as
well as (truly quantum) witnesses of quantum pseudo-
randomness. The infinite order limit of Rényi entropy,
which only depends on the largest eigenvalue, is known
as the min entropy. We further show that the min entan-
glement entropy (and therefore all Rényi entanglement
entropies) becomes almost maximal, which we also call
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“max-scrambling”, for designs of an order that is only
logarithmic in the dimension of the system. So designs
of higher orders are essentially completely random in
terms of entanglement. This leads to a strong estimate
of the time needed to achieve max-scrambling based on
the fast scrambling [3] and design [21] conjectures. Fi-
nally, we are able to construct state 2-designs such that
all Rényi entanglement entropies of orders greater than
2 are bounded away from the maximum, which estab-
lishes an explicit separation between the complexities di-
agnosed by Rényi entanglement entropies.

This letter distills the key quantum information results
of [23], which is written from the perspective of scram-
bling complexity. Please refer to [23] for technical details
and more discussions.

Preliminaries. Here we recall the formal definitions of
designs and generalized entropies, the central mathemat-
ical concepts of this study.

Designs are ensembles of quantum states (unitaries)
that are evenly distributed on the complex unit sphere
(unitary group). They are efficient to implement [18–21]
and useful in many important quantum information pro-
cessing tasks such as randomized benchmarking [24, 25]
and decoupling [26]. There are several ways to charac-
terize exact or approximate designs (see e.g. [27]), among
which the one based on polynomials is the most relevant
to this work. Let Hom(t,t)(C

d) be the space of polynomi-
als homogeneous of degree t both in the coordinates of
vectors in C

d and in their complex conjugates. An ensem-
ble ν of pure state vectors in dimension d is a (complex
projective) t-design if

Eν p(ψ) =

∫

dψp(ψ) ∀p ∈ Hom(t,t)(C
d),

where Eν denotes the expectation value over ν. The
integral is taken with respect to the (normalized) uni-
form measure on the complex unit sphere in Cd. De-
signs of unitary channels can be defined analogously. Let
Hom(t,t)(U(d)) be the space of polynomials homogeneous
of degree t both in the matrix elements of U ∈ U(d) and
in their complex conjugates. An ensemble µ of unitary
operators in dimension d is a unitary t-design if

Eµ p(U) =

∫

dUp(U) ∀p ∈ Hom(t,t)(U(d)),

where the integral is taken over the normalized Haar mea-
sure on U(d).

Order-α entropies of a density operator ρ are en-
tropic functions (which we call characteristic functions)
of tr{ρα}. A unified definition of such entropies is given

by S
(α)
s (ρ) = 1

s(1−α) [(tr{ρα})s − 1], where s is a param-

eter that identifies the characteristic function and the
family of entropies. The most representative families are

Rényi (the limiting case s → 0) and Tsallis (s = 1) en-
tropies. In this work, we mostly focus on Rényi entropies

S
(α)
R (ρ) =

1

1− α
log tr{ρα},

with orders α being positive integers. In contrast to other
generalized entropies, Rényi entropies have the follow-
ing desirable properties, which make this family most
relevant: i) they are convex in tr{ρα}, which makes it
possible to use Jensen’s inequality to lower bound the
design-averaged values by Haar integrals; ii) they have
the same roof value n for uniform spectrum for systems
of n qubits, which allows meaningful comparisons with
the maximum and between different orders; iii) they are
additive on product states (otherwise it is not natural to
define generalized quantities such as mutual information
and tripartite information). When the order α increases,

S
(α)
R becomes more and more sensitive to the nonunifor-

mity in the spectrum: S
(α1)
R ≥ S

(α2)
R when α1 < α2.

Taking the α→ ∞ limit yields the min entropy:

Smin(ρ) = − log ‖ρ‖ = − logλmax(ρ),

where ‖·‖ denotes the operator norm and λmax(·) de-
notes the largest eigenvalue. Min entropy lower bounds
all Rényi entropies.
Random states. We first introduce results on random

pure states. Consider a bipartite system with Hilbert
space H = HA ⊗ HB, where HA and HB have dimen-
sions dA and dB, respectively. The entanglement en-
tropy between partitions A and B of a pure state |ψ〉
is given by the entropy of the reduced density operator
ρA = trB(|ψ〉〈ψ|).
A key observation is that, given an α-design να, we

have Eνα tr{ραA} =
∫

dψtr{ραA} since tr{ραA} only in-
volves Hom(α,α) terms of the entries of |ψ〉. Since the
characteristic function for the Rényi-α entropy is con-

vex, Eνα S
(α)
R (ρA) is lower bounded by the characteristic

function of the Haar integral
∫

dψtr{ραA} by Jensen’s in-
equality. Calculation shows that

∫

dψtr{ραA} =
1

α!D[α]

∑

σ∈Sα

d
ξ(στ)
A d

ξ(σ)
B , (1)

where D[α] =
(

dAdB+α−1
α

)

is the dimension of the sym-
metric subspace of H⊗α, Sα is the symmetric group of α
symbols, ξ(σ) is the number of disjoint cycles associated
with σ [28], and τ := (1 2 · · · α) is the 1-shift (canonical
full cycle). We noticed that similar results have been de-
rived and rederived several times [12, 29–32]. A simple
derivation was presented in the companion paper [23].
First, consider equal partitions dA = dB and the limit

of large dimension. Here we introduce the following cycle
lemma (proof in [23], cf. [33]): for all σ ∈ Sα, ξ(στ) +
ξ(σ) ≤ α+ 1. Then Eq. (1) reduces to

∫

dψtr{ραA} = Catαd
−α+1
A +O

(

d
−(α+1)
A

)

, (2)
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where Catα is the α-th Catalan number, satisfying
log Catα

α−1 ≤ 2 for all α ≥ 2. So we obtain:

Theorem 1. Let να be a projective α-design. Consider

equal partitions dA = dB. As dA → ∞,

Eνα S
(α)
R (ρA) ≥ log dA − logCatα

α− 1
+O(d−2

A ). (3)

So,

Eνα S
(α)
R (ρA) ≥ log dA −O(1). (4)

That is, the Rényi-α entanglement entropy across any
cut averaged over an α-design is very close to (at most a
constant away from) the maximum.
In fact, we are able to derive explicit bounds for finite

dimensions and non-equal partitions:

Theorem 2. Let να be a projective α-design. Let q :=
α3/(32d2B) < 1, h(q) := 1 + 2q/[3(1− q)]. For all dA, dB
and α,

Eνα S
(α)
R (ρA) ≥ log dA − 2α− 3

2 logα+ log h(q)− 1
2 log π

α− 1
≥ log dA − 2. (5)

When dA < dB, the result can be improved as follows:

Eνα S
(α)
R (ρA) ≥ log dA − 2 log

(

1 +

√

dA
dB

)

− log c

≥ log dA − 2

√

dA
dB

− log c, (6)

where c = 1 if H is real and c = 2 if H is complex.

Error bounds indicating that the above results are
highly robust against small deviations from exact designs
can be found in the companion paper [23]. These results
can be regarded as improved Page’s theorems that are
tight in terms of the complexity.
Now we focus on the min entropy, given by α → ∞.

Large min entropy implies that the spectrum is almost
completely uniform. Are designs of infinite orders needed
to achieve almost maximal min entanglement entropy?
The following result answers the question in the negative:

Theorem 3. Let να be a projective α-design, where α =
⌈(log dA)/a⌉ ≤ (16d2B)

1/3 with 0 < a ≤ 1. Then

Eνα Smin(ρA) ≥ log dA − 2− a. (7)

In particular, Eνα Smin(ρA) ≥ log dA − 3 if α = ⌈log dA⌉.

That is, Ω(log dA)-designs maximize all Rényi entangle-
ment entropies, and so are essentially indistinguishable
from the Haar measure by the entanglement spectrum.
Conversely, one may wonder whether there exist α-

designs such that Rényi entanglement entropies of or-
ders larger than α are bounded away from the maximum,

which we call “gap α-designs”. This indicates that they
do not behave like designs of higher orders in a strong
sense. Here we present an explicit example of gap 2-
designs. Let G = UA⊗UB, where UA,UB are the unitary
groups on HA,HB , respectively. Calculation shows that
the orbit of |ψ〉 under the action of G forms a 2-design if
and only if tr{ρ2A} with ρA = trB(|ψ〉〈ψ|) is equal to the
average over the uniform ensemble, that is,

tr{ρ2A} =
dA + dB
dAdB + 1

. (8)

The same conclusion still holds if UA,UB are replaced
by subgroups that form unitary 2-designs on HA,HB,
respectively. Equation (8) holds if ρA has the following
spectrum

λ1 =
dAdB + 1 + (dA − 1)

√

(dA + 1)(dAdB + 1)

dA(dAdB + 1)
,

λ2 = · · · = λdA =
dAdB + 1−

√

(dA + 1)(dAdB + 1)

dA(dAdB + 1)
.

Suppose dB/dA ≤ r where r is a constant, then λ1 ≥
(rdA)

−1/2, and so

S
(α)
R (ρA) ≤

1

1− α
logλα1 ≤ α

2(α− 1)
(log dA+log r). (9)

As dA increases, the gap of S
(α)
R (ρA) from the maximum

is unbounded for all α > 2.
Random unitary channels. Now we extend the above

analysis of pure states to the intrinsic entanglement prop-
erties of random unitary channels. The key results are
similar in spirit to those for states, although the deriva-
tions are considerably more involved.
The Choi isomorphism (more generally, the channel-

state duality) is widely used in quantum information the-
ory to study quantum channels as states, by which a uni-
tary operator U acting on a d-dimensional Hilbert space
U =

∑d−1
i,j=0 Uij |i〉〈j| is dual to the pure state

|U〉 = 1√
d

d−1
∑

i,j=0

Uji|i〉in ⊗ |j〉out,

which is called the Choi state of U . Consider bipartitions
of the input register intoA and B, and the output register
into C and D. Let dA, dB , dC , dD be the dimensions of
subregions A,B,C,D, respectively (dAdB = dCdD = d).
We study the entropy of ρAC with ρAC = trBD(|U〉〈U |).
Consider the negative tripartite information

−I3(A : C : D) := I(A : CD)− I(A : C)− I(A : D),

which is suggested in [7] to diagnose information scram-
bling, since it intuitively measures the delocalization of
local information. Here I(A : C) = S(A)+S(C)−S(AC)
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is the mutual information, which measures the total cor-
relation between A and C. Since the input and output
are maximally mixed due to unitarity, the four subregions
are all maximally mixed. As a result, −I3 is determined
by the entanglement entropy S(AC). Indeed, −I3 essen-
tially measures the ability of a channel to generate global
entanglement that “hides” the delocalized information.
Note that −I3 can be reduced to the conditional mutual
information I(A : B|C) [34], which is of great interest in
quantum information theory.

Given a unitary α-design µα. By similar arguments
involving the definition of unitary designs and the con-
vexity of the Rényi characteristic function, the problem

of bounding Eµα S
(α)
R (ρAC) boils down to computing the

Haar integral
∫

dUtr{ραAC}. In general, we find that

∫

dUtr {ραAC}

=
1

dα

∑

σ,γ∈Sα

d
ξ(στ)
A d

ξ(σ)
B d

ξ(γτ)
C d

ξ(γ)
D Wg(d, σγ−1), (10)

where

Wg(d, σ) =
1

(α!)2

∑

λ⊢α

χλ(1)2χλ(σ)

sλ,d(1, · · · , 1)

are Weingarten functions of U(d). Here λ ⊢ α means λ is
a partition of α, χλ is the corresponding character of Sα,
and sλ is the corresponding Schur function/polynomial.
Notice that sλ,d(1, · · · , 1) is simply the dimension of the
irrep of U(d) associated with λ. The Weingarten function
can be derived by various tools in representation theory,
such as Schur-Weyl duality [35, 36] and Jucys-Murphy
elements [37].

For equal partitions, in the limit of large dimension,
we obtain the following analogous result by applying the
cycle lemma:

Theorem 4. Let µα be a unitary α-design. Consider

equal partitions of the input and output registers, dA =
dB = dC = dD. As d→ ∞,

Eµα S
(α)
R (ρAC) ≥ log d− logCatα

α− 1
+O(d−1). (11)

So,

Eµα S
(α)
R (ρAC) ≥ log d−O(1). (12)

Therefore, the Rényi-α entanglement entropy between
AC and BD (and the corresponding negative tripartite
information based on the Rényi-α entropy) averaged over
unitary α-designs is almost maximal.

We also provide more explicit bounds for finite dimen-
sions and non-equal partitions:

Theorem 5. Let µα be a unitary α-design. Suppose d >√
6α7/4 and dA ≤ dB . Then

Eµα S
(α)
R (ρAC)

≥ log d− logCatα
α− 1

−
log
[

aαh(q)
8

(

7 + cosh 2α(α−1)
d

)]

α− 1
,

(13)

where aα :=
(

1− 6α7/2

d2

)−1

.

Similarly, these results do not deviate much for approx-
imate unitary designs (see [23] for detailed error analy-
sis).
The result on the min entropy is also similar:

Theorem 6. Let µα be a unitary α-design, where 1 ≤
α = ⌈log d/a⌉ ≤

√
d/2 and a > 0; then

Eνα Smin(ρAC) ≥ log d− 2− a. (14)

In particular, Eνα Smin(ρAC) ≥ log d− 3 if α ≥ ⌈log d⌉.

Therefore, unitary Ω(log dAC)-designs maximize all
Rényi entanglement entropies.
Design complexities by Rényi. In the above we pre-

sented kinematic results revealing fundamental corre-
spondences between Rényi entanglement entropies and
quantum designs, which imply that states or unitaries
sampled from α-designs typically exhibit nearly maximal
Rényi-α entanglement entropy. This also suggests Rényi-
α entanglement entropy as potential diagnostics of the
randomness complexity of α-designs beyond information
scrambling, in dynamical scenarios. Note that a recent
work [38] generalizes the out-of-time-ordered correlators
(which are widely used in the study of scrambling, see
e.g. [39–45]) to higher points, and establish similar con-
nections to unitary designs via frame potentials.
In particular, the saturation of the min entanglement

entropy indicates that the system looks completely ran-
dom (and the local information is completely lost) to
any local observer, which is the strongest form of scram-
bling that we call “max-scrambling”. How fast can phys-
ical systems achieve max-scrambling? The recent de-
sign Hamiltonian conjecture [21] argues, based on the
original fast scrambling conjecture [3], that there exist
physical dynamics (represented by local [46] and time-
independent random Hamiltonians) that achieves ap-
proximate unitary α-designs in O(α logn) time, where
n is the number of qubits. Our result on logarithmic de-
signs indicates that O(n)-designs are sufficient for max-
scrambling, and therefore suggest the following fast max-
scrambling conjecture: max-scrambling can be achieved
by physical dynamics in O(n logn) time.
Outlook. The mathematical results of this letter con-

cern the average Rényi entanglement entropies of state
and unitary designs. Some technical problems are left
open. For example, we are not yet able to construct
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gap α-designs for α > 2 and for unitaries. Moreover,
due to the lack of subadditivity, the negative tripartite
information −I3 in terms of Rényi entropies are not nec-
essarily positive. It is worth looking into when this sit-
uation occurs, and further considering the meanings of
such derived quantities. Also, the results here are about
expected values. It would be nice to carry out proba-
bilistic analysis on concentration to talk about “typical”
behaviors in a more rigorous sense.
Our results suggest Rényi entanglement entropies as

powerful tools to further advance the study of quan-
tum randomness and pseudorandomness. For example, a
particularly interesting insight is that Rényi entropies of
non-integer orders are naturally defined, which indicates
that they can be helpful in understanding the mysterious
but potentially important notion of non-integer designs.
The results may also find applications in more relevant
areas, such as quantum entanglement, cryptography, in-
formation theory and statistical mechanics.
The physical aspects are certainly worth further ex-

ploration. For example, it would be interesting to
study the dynamical behaviors of Rényi entanglement
entropies and randomness in specific many-body or holo-
graphic systems, to learn about the physics in the post-
scrambling regime and extend existing studies of entan-

glement growth (e.g., “entanglement tsunami” [47, 48]).
A recent study [49] on a 1d variant of the strongly chaotic
SYK model [50, 51] (which has drawn considerable inter-
est as a solvable toy model of quantum black holes and
holography) shows that Rényi entropies indeed do not
reach the thermal values in the scrambling regime af-
ter a quench, which confirms our expectation that the
randomness complexity of the system is still low. But
the late-time behaviors remain open. Moreover, we hope
to extend the ideas to the study of thermalization and
many-body localization, and dynamics with conserved
quantities. It would also be important to establish more
solid connections between the randomness complexities
and the conventional ones, such as computational, gate
and Kolmogorov complexities, which play active roles in
recent studies of holographic duality and black holes [52–
54], and are of independent interest. Further studies
along these lines are essential to our understanding of
quantum many-body physics and quantum gravity.
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