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We present a flexible scheme to realize exact flat Landau levels on curved spherical

geometry in a system of spinful cold atoms. This is achieved by Floquet engineering of

a magnetic quadrupole field. We show that a synthetic monopole field in real space can

be created. We prove that the system can be exactly mapped to the electron-monopole

system on sphere, thus realizing Haldane’s spherical geometry for fractional quantum

Hall physics. The scheme works for either bosons or fermions. We investigate the

ground state vortex pattern for an s-wave interacting atomic condensate by mapping

this system to the classical Thompson’s problem. We further study the distortion

and stability of the vortex pattern when dipolar interaction is present. Our scheme

is compatible with current experimental setup, and may serve as a promising route of

investigating quantum Hall physics and exotic spinor vortex matter on curved space.

Introduction.— The realization of quantum Hall
physics (QHP) in neutral atoms remains one of the long-
standing goals in cold atom community [1–9]. Theoreti-
cally, atomic systems not only provide an excellent plat-
form to explore such novel physics for both bosons and
fermions, the former is beyond the usual condensed mat-
ter systems, but also enable us to test various predictions
with high precision due to its cleanness and high control-
lability. Experimentally, exact flat landau levels can be
obtained in principle by rotating the confining harmonic
potential [10–13] with frequency equal to that of the har-
monic trap. However, in this limit, effective trapping po-
tential vanishes, and the atomic cloud loses confinement.
This makes it almost impossible to reach the exact quan-
tum Hall regime using this setup [12]. Therefore, search-
ing for new flexible methods of realizing QHP becomes
important.

On the other hand, QHP becomes more clear in a mod-
ified geometry, as pointed out by Haldane in 1983 [14] ,
who showed that a spherical surface trap with monopole
[15–17] at the origin can be used as a prototype to under-
stand such novel physics. The simplicity of this mode not
only makes it an ideal numerical starting point to tackle
this complex many-body system [18, 19], but also reveals
how interesting physics can be induced in curve spaces
with the help of magnetic monopoles. Unfortunately, di-
rect realization of this beautiful model seems impossible
as no real magnetic monopole has been found.

In this paper, we show that, within current technique,
exact Landau levels on Haldane’s spherical geometry can
indeed be implemented in a highly controllable man-
ner. The key ingredient is the construction of synthetic

monopole field in real space [20]. We prove that this
is possible by using atoms with internal spin degrees of
freedom [21–29] subjected to a Floquet engineered mag-
netic quadrupole field. By projecting the atom into the
lowest-energy spin manifold using the technique devel-
oped by Ho and Huang in [30], we confirm that the single-
particle physics is mapped to an electron-monopole sys-
tem [14, 15] on sphere. This is exactly the Hamiltonian
on curved sphere with flat Landau levels, as originally
envisioned by Haldane, which enables the exploration of
QHP using neutral atoms with high tunability.

As a first step, we investigate the exotic ground state
vortex pattern in this curved geometry for Bose conden-
sates. For s-wave interaction, we show that stable vortex
pattern can be well described by the standard Thomp-
son’s problem, which serves as a direct verification of
charge-vortex duality in 2D system. For dipolar atoms,
the anisotropy of dipole-dipole interaction breaks the ro-
tational symmetry, which results in the accumulation of
vortices around the poles and the equator, and can lead
to an instability. We note that the effect of the underly-
ing geometry on various quantum orders has been widely
considered [30–45], and only addressed recently for con-
densates on a cylindrical surface[30]. Our work thus pro-
vides a promising route of exploring various novel spinor
vortex matter involved in a curved spherical geometry.

Realization of synthetic monopole field.— Our scheme
of realizing the synthetic monopole field for cold atoms
can be outlined as follows. We start by considering an
atom with hyperfine spin F subject to a magnetic field

B = B0~z +B1[1− 4λ cos(ωt)](x~x + y~y − 2z~z). (1)
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The magnetic field consists of a strong static bias field
along the z-axis with magnitude B0, and a time-periodic
quadruple field with driving frequency ω. We note that a
static version of B has also be used by Ho and Huang [30]
to induce artifical gauge fields on a cylinder. The inter-
action between the atomic magnetic dipole and the field
leads to the Zeeman Hamiltonian H̃F = −µBgFF·B with
µB the Bohr magneton and gF the corresponding Landé
g-factor. For simplicity, here we neglect the quadratic
Zeeman term proportional to (B · F)2 ≃ B2

0F
2
z , which

can be compensated by a proper choice of λ (see Supple-
mental Material (SM) [46] for details).
The effects induced by the strong bias field B0 can

be removed by transforming the whole system into the
rotating frame defined by the unitary operator

U = exp(−iωLtFz), (2)

where ωL ≡ µBgFB0/~ is the Larmor frequency for the
bias field. The Hamiltonian in the rotating frame is given
byHF = U †H̃FU−iU †∂tU . Under the condition ω = ωL,
i.e., the driving frequency of the quadruple field matches
with the larmor frequency, and furthermore when ω is
much larger than all other energy scales, the Hamilto-
nian in the rotating frame takes the following form [47]
HF ≃ µBgFB1 [2λ (xFx + yFy) + 2zFz], where the fast
oscillating terms have been neglected. The above Hamil-
tonian can be recast into the form [46]

HF = 2µBgFB1λr(F · ~er + γ cos θFz), (3)

where r =
√

x2 + y2 + z2 is the radial coordinate, ~er the
radial unit vector, and γ ≡ 1/λ− 1. In the following, we
will mainly focus on the situation λ = 1 or γ = 0, under
which Hamiltonian (3) describes an atom with magnetic
dipole moment moving in a radial magnetic field, whose
strength increases linearly with r. If the atom is confined
on a spherical shell surface (which will be the case we will
focus on below), this radial magnetic field is equivalent
to a monopole field.
Single-particle Hamiltonian.— Now we consider the

full single-particle Hamiltonian which includes HF (with
γ = 0) and an isotropic harmonic trapping potential
V = mω2

T r
2/2 with m being the atomic mass, ωT the

harmonic trap frequency, and lT =
√

~/mωT the charac-
teristic length. In the unit system defined by ~ = m =
ωT = 1, the single-particle Hamiltonian takes the form

H0 = −
~∇2

2
+

1

2
r2 + α′rF · ~er, (4)

where α′ ≡ 2µBgFB1(~mω
3
T )

−1 measures the strength
of Zeeman coupling with the synthetic monopole field.
Here and in the following, we assume α′ > 0 with-
out loss of generality. Under this convention, the low-
est spin manifold corresponds to the spin state which
is polarized along the local monopole field and obeys
F · ~er|F,−F 〉r = −F |F,−F 〉r. In the Fz-representation,

we have |F,−F 〉r = exp(−iFzϕ) exp(−iFyθ)|F,−F 〉z,
where θ and ϕ are the polar and the azimuthal angles,
respectively.
Under the assumption that the atom adiabatically fol-

lows the local monopole field and thus stays in the lowest
spin manifold [30, 46], we can write the total wave func-
tion of the atom as ψ(~r) = φ(~r)|F,−F 〉n, where φ(~r) is
the spatial wave function. After projecting out the spin
component, we find that φ(~r) is governed by the following
effective Hamiltonian (see SM [46] for details)

Heff =
(−i~∇+ ~A)2

2
+ V (r), (5)

where ~A(~r) = F cos θ
r sin θ

~eϕ is the effective gauge potential,
and V (r) = r2/2−αr+F/2r2 with α = α′F the effective
trapping potential. When α ≫ 1, V (r) has a minimum
at r = R ≈ α, and the atom is tightly confined near this
minimum with negligible radial excitation. Under this
condition, the radial degrees of freedom is frozen and the
spatial wave function is reduced to φ(~r) = h(r)f(θ, ϕ),
where f(θ, ϕ) is governed by the reduced Hamiltonian

H =
1

2R2
Λ2 (6)

with Λ = ~r × [−i~∇+ ~A(~r)].
Hamiltonian (6) describes a charged particle confined

on a spherical surface with radius RlT subject to a mag-
netic monopole with charge proportional to F centered
at the origin. The model was studied by Dirac, Wu-
Yang, and many others to clarify the quantization of
monopole charge [16, 17], and later used by Haldane as
an alternative spherical geometry to understand the Frac-
tional QHP (FQHP) [14]. The single-particle eigenstates
are given by the monopole harmonics Ym

l,F [46, 48, 49]
with l = F, F + 1, · · · and m = −l,−l + 1, · · · , l. The
corresponding energy eigenvalues are Ek = [l(l + 1) −
F 2]/(2R2) with k = l−F , which leads to a Landau-level
like structure.
The above construction of Haldane spherical surface

provides a unique way to explore FQHP using neutral
atoms. First, unconstrained expansion of the atomic
cloud is avoided due to the finite size of the surface. The
exact flatness of Landau levels enables that FQHP can
be easily manifested with only a few particles by tun-
ning the interaction effect via Feshbach resonance using
magnetic field, or by changing the density of the cloud
[10–12]. Second, the simplicity of the model makes it
possible for the direct comparison between experimental
and theoretical results [18, 19], which provides an ideal
testbed for various theoretical predictions about FQHP.
Third, the high flexibility of the system also enables the
investigation of novel quantum matter related to QHP
and curved spherical geometry, as we will show in the
following.
Ground state vortex structure for condensate with con-

tact interaction.— We now consider the properties of a
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weakly-interacting atomic condensate. The reduced con-
densate wave function f(Ω̂) = f(θ, ϕ), defined above
Eq. (6), satisfies the following Gross-Pitaevskii (GP)
equation:

i∂tf(Ω̂) =

[

Λ2

2
+ g|f(Ω̂)|2 + gdD(Ω̂)

]

f(Ω̂), (7)

where for simplicity, we have rescaled the radius of the
sphere to be the units for length; the second term in the
square bracket describes the contact s-wave interaction
characterized by the dimensionless interaction strength
g ≃ 2

√
2πNa/lT , with a the s-wave scattering length

and N the number of atoms; the third term describes the
dipolar interaction characterized by strength gd, and the
form of D(Ω̂) depends on the orientation of the atomic
dipole, whose explicit form is given in SM [46].
For non-dipolar condensate with gd = 0 and with

weak contact interaction, since the single-particle eigen-
states in the lowest Landau level (LLL) can be writ-
ten as Ym

F,F ∼ uF−mvF+m with u = cos θ
2e

−i
ϕ

2 and

v = sin θ
2e

i
ϕ

2 , a general wave function within this sub-

space can be expressed as f(Ω̂) =
∑2F

m=0 cmu
F−mvF+m,

which can then be factorized as Π2F
j=1(uvj − ujv) up to

a normalization constant. This describes a lattice of 2F
vortices, with (uj, vj) representing the coordinates of the
vortices on the sphere. The interaction energy is written
as Uint ∼

∫

dΩ̂|f(Ω̂)|4 with

|f(Ω̂)|2 = e−K , and K ∼ −2
∑

j

ln |uvj − ujv|, (8)

where |uvj−ujv| is the chord distance between two points
on the unit sphere. The quantity K precisely describes
the energy of an electron interacting with 2F other elec-
trons located at (uj , vj). Therefore, minimization of Uint

with respect to (uj , vj) can be mapped to the problem of
finding the stable configuration of 2F electrons on sphere.
This is exactly the well-known Thomson’s problem, as J.
J. Thomson posed such a model to understand his plum
pudding model of the atom in 1904 [50].

FIG. 1. (Color) Stable ground-state vortex configurations
with isotropic s-wave interaction g = 50 for different F . Here
the locations of the vortex cores are represented with blue
dots on the spherical surface.

We have obtained the ground state by solving the
GP Equation (7) using imaginary evolution method
[46, 51, 52] without taking the LLL approximation. The
ground state vortex configuration for F up to 8 is shown
in Fig. 1. For each F , the pattern consists of 2F vortices
and is equivalent to (up to a global rotation) the standard
solutions to Thomson’s problem, which is a direct reflec-
tion of charge-vortex duality in 2D systems. We note
that the Thomson’s lattice is stable for g up to 500 (the
largest value we tested numerically), which is far beyond
the usual LLL approximation as the dimensionless mag-
netic length lm =

√

1/F is much larger than the healing

length ξ =
√

2π/g [46]. The singularity of ~A at the two
poles in our chosen gauge can be removed after projecting
the wave function back to the usual Zeeman manifolds.
For each Zeeman sublevel, there is a giant vortex with
∓F + Fz units of circulation around the north and the
south poles, respectively, as shown in SM [46].
Stability and vortex structure in dipolar condensate.

— We now include the dipolar interaction term in the
Hamiltonian, which is very typical for condensates of
atoms with large internal spin. For an atom with spin
F, it possesses a magnetic dipole moment ~µ = µBgFF.
Given two dipoles ~µ1 and ~µ2 located at ~r1 and ~r2, re-
spectively, the dipolar interaction in the lab frame reads
Ud(~r1, ~r2) = [~µ1 · ~µ2 − 3(r̂12 · ~µ1)(r̂12 · ~µ2)]/r

3
12 with

r12 = |~r1 − ~r2| and r̂12 = (~r1 − ~r2)/r12. In the rotat-
ing frame defined by the unitary operator U in Eq. (2),
it transforms as Ud(~r1, ~r2) → U †UdU , and becomes time-
dependent. In this case, each local spin rotates around
the z-axis with the frequency ωL, as shown in Fig. 2a.
After integrating out the high-frequency parts, we arrive
at an effective time-independent dipolar interaction po-
tential as (see SM [46] for details)

U
(e)
d (~r1, ~r2) =

1

r312

√

6π

5
Y 0
2 (Ω̂12)Σ

0
2(~µ1, ~µ2) (9)

with Ω̂12 the orientation of ~r12 and Σ0
2(~µ1, ~µ2) =

√

2/3(~µ1 · ~µ2 − 3µ1,zµ2,z). Therefore, the interaction
breaks the rotational symmetry, which modifies the dis-
tribution of the condensate and distorts the vortex pat-
tern obtained in the previous section.

The anisotropicity of U
(e)
d (~r1, ~r2) can be illustrated

from its local properties. For two neighboring sites repre-
sented as ~r′ = ~r+δ(cosα~eθ+sinα~eφ) with δ an infinites-
imal arc length and α the azimuthal angle in the local
tangent plane, the diploar interaction can be written as

U
(e)
d (~r, ~r′) ∝ (3 cos2 α sin2 θ − 1)(1− 3 cos2 θ)

δ3
. (10)

When ~r − ~r′ is parallel with the longitude with α = 0,

U
(e)
d (~r, ~r′) becomes attractive for θ ∈ [θ2, θ1]∪ [π−θ1, π−

θ2] with θ1 = cos−1
√

1/3 and θ2 = cos−1
√

2/3. How-

ever, when ~r−~r′ coincides with the latitude, U
(e)
d (~r, ~r′) is

attractive only around the equator with θ ∈ [θ1, π − θ1].
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ba

FIG. 2. (Color) Modulated dipolar orientation on the spher-

ical surface and the critical g
(c)
d

along with repulsion g for
different F . (a) In the interaction picture, each local dipole
rotates around the z-axis with frequency ωL, which results in
an average dipolar interaction described by Eq. 9. (b) shows
the stability diagram in the gd − g plane. The condensates

is unstable when gd > g
(c)
d

. The critical g
(c)
d

decreases along
with F , and approaches the limit dotted line for F → ∞.

This azimuth-dependent attractive interaction can re-
sult in instability and collapses the condensates. The
average local dipolar interaction can be estimated by

integrating over the angle α and reads U
(e)

d (~r, δ) ∝
(1 − 3 cos2 θ)2/(2δ3), which is minimized at θ = θ1 and
reaches its local maxima when θ = 0 (or π) and π/2.

Figure 2b shows the critical dipolar interaction

strength g
(c)
d as a function of contact interaction streg-

nth g for different spin F . The condensate is stable below

the critical line, and unstable above it. The critical g
(c)
d

deceases as F increases. Physically, this can be under-
stood by noticing that the degeneracy of single-particle
ground state (i.e., the lowest Landau level) increases lin-
early with F . For larger F , the condensate has more
degrees of freedom to adjust its wave function within
the lowest Landau level to lower the interaction energy,
while the kinetic energy almost remains unaffected. In
the limiting case F → ∞, the kinetic energy is complete
quenched, and the stability of the condensate is solely
determined by the relative strength of the contact repul-

sion and the dipolar interaction. This critical g
(c)
d for

F = ∞ is represented by the dotted line shown in Fig.
2. Our numerical results for finite F provides a direct
verification towards this limit.

We note that for condensates with stronge dipolar in-

teraction near the critical g
(c)
d , the vortex configuration

also deviates significantly from the standard Thomson’s
lattice, particularly for large F , as depicted in Fig. 3.
Compared with s-wave contact interaction, these pat-
terns are equivalent up to a global rotation around the

z-axis. Since U
(e)

d (~r, δ) reaches its local maxima at θ = 0
(π)and π/2, to minimize the interaction energy, vortices
appear first near the two poles, and later spread around
the equator with the increasing of F . For all F , the den-
sity peaks around the two latitude lines with θ ∼ θ1 and
π − θ1 respectively, as shown in Fig. (3b)-(3c). This can

FIG. 3. (Color) Stable ground-state vortex configurations of
dipolar BEC with g = 50 and different gd. In (a), the data
is obtained using gd = 10 for F = 1 ∼ 5 and gd = 8 for
F = 6 ∼ 8 respectively. The vortex cores are represented
with blue dots on the spherical surface. Since the dipole-
dipole interaction breaks the rotation symmetry, the pattern
is only equivalent up to a global rotation around z-axis for
each F . (b) and (c) show the selected density portraits for
F = 1 and F = 4, respectively. The vortices pattern is guided
by lines and dot lines inside the sphere.

be understood from the average local dipolar interaction

as U
(e)

d (~r, δ) is minimized when θ = θ1 and π − θ1.

Experimental feasibility.— For 168Er [28] atoms with

F = 6 in a bias magnetic field ~B = B0~z with B0 = 0.30G,
the linear Zeeman splitting is about ω = 2π × 500kHz,
which is much larger than the typical trapping frequency
ωT = 2π×2.5kHz. The radial length scale of the conden-
sates is estimated as lT ≃ 0.246µm. To obtain an effec-
tive spherical-shell trap, we need α ≃ 0.48B1[cm·G−1] ≫
1. For current experimental setup, it is not difficult to
achieve a magnetic field gradient of B1 ≃ 20G · cm−1.
This leads to α ∼ R ∼ 10 ≫ 1. Using these setting,
the splitting of the first two Landau levels is ∆L =
(F + 1)ωT/R

2 ∼ 2π × 175Hz, which is much smaller
than the excitation energy ωT along the radial direc-
tion. This ensures that condensates are only confined
near the surface of the sphere. We note that for 87Rb
atoms with F = 1 [53–55], B1 needs to be as high as
102 ∼ 103G · cm−1, which is still a challenge to current
experimental setup. Therefore, atomic species with large
internal spin are always helpful for the construction of
such surface trap. The contact interaction can be esti-
mated by g ≃ 0.236N . The relevant dimensionless heal-
ing length reads ξ ≃ 5.16/

√
N , which can then be tuned

over a wide parameter regimes by changing N compared
with the magnetic length lm.

Conclusion.— By constructing an effective hedgehog-
like gradient magnetic field with spinful atoms, we
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have proposed a flexible way to implement an effective
electron-monopole system confined on a spherical sur-
face. We show how various vortex patterns can be ob-
tained in the presence of inter-particle interactions. The
scheme proposed here provides a promising route to in-
vestigate FQHP of bosons or fermions in curved space.
Finally, the synthetic hedgehog-like gradient magnetic
field for spinful atoms also provides new possibilities of
searching for exotic spinor quantum matters related to
magnetic monopoles [24, 56–62].
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