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We consider a one-dimensional interacting spinless fermion model, which displays the well-known
Luttinger liquid (LL) to charge density wave (CDW) transition as a function of the ratio between
the strength of the interaction, U , and the hopping, J . We subject this system to a spatially uniform
drive which is ramped up over a finite time interval and becomes time-periodic in the long time limit.
We show that by using a density matrix renormalization group (DMRG) approach formulated for
infinite system sizes, we can access the large-time limit even when the drive induces finite heating.
When both the initial and long-time states are in the gapless (LL) phase, the final state has power
law correlations for all ramp speeds. However, when the initial and final state are gapped (CDW
phase), we find a pseudothermal state with an effective temperature that depends on the ramp rate,
both for the Magnus regime in which the drive frequency is very large compared to other scales in
the system and in the opposite limit where the drive frequency is less than the gap. Remarkably,
quantum defects (instantons) appear when the drive tunes the system through the quantum critical
point, in a realization of the Kibble-Zurek mechanism.

The manipulation of materials properties by con-
trolled application of high amplitude electromagnetic
fields, with the ultimate goal of creating ”quantum mat-
ter on demand”, is attracting an increasing amount of
attention[1, 2]. As technology for generating intense elec-
tromagnetic pulses across a broad wavelength spectrum
has become available, there is an urgency to understand
how to use light to induce phenomena that are inaccessi-
ble in thermal equilibrium and study its interaction with
complex phases of matter.

A system exposed to a time periodic drive may be de-
scribed by a ”Floquet Hamiltonian”[3] with a discrete
time translation invariance. While Floquet systems have
been studied extensively in atomic physics [4–8], less at-
tention has been paid to solid state realizations due to
the issue of runaway heating. If the drive period matches
an excitation energy in the solid, then an ever increas-
ing number of excitations may be generated,driving the
system to the infinite temperature limit. However, if
the drive frequency is sufficiently detuned from simple
excitation energies, for example by being very high [9–
11] or being well within an excitation gap [12–14], run-
away heating only occurs at exponentially long times and
there is a well defined intermediate time scale, typically
referred to as the pre-thermal regime, where heating is
negligible. The high frequency limit has the added sim-
plification that a low order Magnus expansion [15] can
be employed to describe the driven system in terms of an
effectively static Hamiltonian with renormalized param-
eters [16, 17].

Most of the theoretical work on Floquet-like systems
has been limited to qualitative analysis, (effectively) non-
interacting models or small systems in the long-time
limit. Important exceptions include the work of Poletti
and Kollath [18] where a one dimensional Bose-Hubbard

model with a drive field ramped slowly up from zero
was studied; that of Mentink, Balzer and Eckstein and
Mendoza-Arenas et al. [12, 19] who performed dynam-
ical mean field analyses of the destruction of antiferro-
magnetism upon application of time periodic fields, and
its dependence on ramp speed [20–22]; and a general dis-
cussion of the Floquet adiabatic theory for different drive
parameters [23].

In this paper we present a comprehensive study of an
interacting quantum many-body model driven by elec-
tromagnetic radiation which vanishes at large negative
times, is periodic at large positive times, and is ramped
up at controllable rates. We use a numerically exact
density matrix renormalization group (DMRG) method
[27–29] that is formulated in the thermodynamic (infi-
nite system size) limit.[30–32] We show that this method
allows us to access unprecedentedly long times in the
pre-thermal regime where heating may be neglected. We
are interested in the dependence of the properties of this
pre-thermal states on the ramp speed of drive and fre-
quency. We find that the long-time Floquet behavior
can be qualitatively understood in terms of equilibrium
models with renormalized parameters and a temperature
which depends on ramp speed and other factors.[33] Fi-
nally, we show that a key feature of the ‘Kibble-Zurek’
case [24, 25, 38], in which the drive tunes the system
across a quantum phase transition, is the appearance
of quantal (instanton/anti-instanton) defects. Our re-
sults demonstrate the power of time-dependent DMRG
to study Floquet engineering in interacting systems.

We consider spinless fermions with a nearest neighbor
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FIG. 1. Ground state phase diagram of Eq. 1 as a function
of ratio of interaction strength U to hopping J showing Lut-
tinger Liquid (LL), and charge density wave (CDW) phases.
Notations (a1-3) and (b) indicate the studied cases, with the
direction in which the effective interaction strength can be
tuned by a nonequilibrium drive indicated by the arrow head.
The circular marker signals the location of the LL to CDW
quantum phase transition.

interaction described by the following Hamiltonian
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The operators ci and c†i annihilate or create spinless

fermions at site i and ni = c†i ci is the site occupancy. We
concentrate on the case of half filling, with U > 0 and
(without loss of generality) J > 0. The equilibrium phase
diagram is shown in Fig 1. We choose J(t) = JeiA(t),
with A(t) the vector potential corresponding to a spa-
tially uniform electric field E = −∂tA and consider a
harmonic drive with frequency Ω which is ramped on
over a time interval τ :

A(t) =
E0

Ω
sin(Ωt)

[
1

2
+

1

2
tanh

(
t

τ

)]
(2)

We consider two frequency regimes: ”Magnus”, Ω �
J, U (we choose Ω = 10J) and ”subgap”, Ω < ∆ (we
choose U = 16J and Ω = 0.6U). Previous work on
related models [9–14] suggests that in these regimes a
parametrically long intermediate time regime exists in
which heating may be neglected and a steady state may
be defined. As such, the long-time physics may be un-
derstood in terms of pseudo-equilibrium arguments based
on Hamiltonians renormalized via an appropriate average
over a drive period, effectively moving the system from
one point to another in the phase diagram (Fig. 1). In
this language we distinguish the bare parameters (with-
out the driving) from the effective ones (with the driving)
such as the bare gap ∆ and the effective gap ∆eff (both
can be obtained by Bethe Ansatz using the values of U
and the bare hopping J or effective hoping Jeff , respec-
tively). In the Magnus case it is argued [15] that in the
steady state one may simply replace J(t) by its average
over a period 2π/Ω, J → Jeff = J0(E0/Ω)J . This leads
to a decrease in the magnitude of J , because the Bessel
function has magnitude less than 1, i.e. an increase in
the ratio U/J , implying that the drive moves the system
to the right in Fig. 1 as indicated by arrows in the cases

(a1-3), either within the LL phase (a1), within the CDW
phase (a2) or across the quantum critical point separat-
ing the two (a3). In the subgap regime, the modification
of the Hamiltonian parameters is more involved than in
the Magnus case. As noted in Refs. [12, 13], if the drive
period is small relative to the gap, analytical results may
be obtained by retaining only processes that couple ad-
jacent Floquet bands and averaging over a drive period.
Applying this method to our model we find that the long-
time behavior may be described by the effective hopping

Jeff = J

√√√√ ∞∑
n=−∞

(
Jn (E0/Ω)

1− nΩ/U

)2

(3)

which may be either smaller or larger than the starting
J so the system may be moved either to the left or the
right on the phase diagram of Fig. 1 but of course only
within the gapped phase (case (b) Fig. 1).

We characterize the out of equilibrium behavior via the
equal time density-density correlation function C, which
depends on relative position j, ramp time τ and time, t:

Cnn(j, t, τ) =

〈(
n0(t)− 1

2

)(
nj(t)−

1

2

)〉
(4)

focussing in particular on the t and τ dependence of the
large j behavior. In the Luttinger liquid phase at equilib-
rium as T → 0, C decays as a power law for large j while
in the CDW phase C tends exponentially to a non-zero
constant. At T > 0 C decays exponentially to zero at
long scales, with exponent depending on phase, value of
interaction, and temperature.

We use the DMRG methods of Refs. [30–32] to solve
the model (see supplemental information [26] for de-
tails). We start from the ground state corresponding to
A(t) = 0 and integrate forward in time. DMRG cal-
culations are limited by the growth of entanglement en-
tropy; in the Magnus and subgap regimes the entangle-
ment remains manageable because there is no runaway
heating, allowing us to reach large times. In all cases
except the ‘Kibble-Zurek’ (a3) situation, we find (see the
SI [26]) that after times ∼ 100J the system reaches a
steady state, in which the properties (averaged over a few
drive periods) become time-independent. We describe
the steady state properties by comparing to a pseudo
thermal state given by a diagonal density matrix.

Fig. 2 shows the long-time behavior of C, as a function
of inverse ramp time for different distances j. The up-
per panel shows that when the system is in the Luttinger
liquid phase both before and after the ramp (case (a1))
the behavior is completely independent of the ramp time,
and that values of the correlation functions are very close
to those predicted by using the Magnus formalism to ob-
tain an effective J and then using equilibrium formulae
to calculate the T = 0 behavior. As shown in the SI the
exponent characterizing the power-law decay is, within
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FIG. 2. Density-density correlation function C(j) averaged
over the time range t = 100/J to t = 400/J for differ-
ent j (solid lines) as function of inverse of ramp time τ for
Ω/J = 10, E0/Ω = 1 and T/J = 0 (Magnus limit). Top panel:
initial correlation strength U/J = 0.5 (LL phase); Magnus
estimate of final correlation strength U/Jeff ≈ 0.65. Middle
panel: initial state U/J = 1.75 (CDW), final U/Jeff ≈ 2.29
(CDW); bottom panel initial state U/J = 4 (CDW), final
U/Jeff ≈ 5.23 (CDW). The ground state expectation values
from the effective Hamiltonian (J → Jeff) are given as hori-
zontal dashed lines and the gaps ∆eff as vertical dashed lines.

our numerical uncertainty, identical to Magnus estimate
but the prefactor is slightly larger [26]. This T = 0-like
Luttinger liquid behavior is also seen in the momentum
dependences displayed in the SI [26]. Thus in this case
the energy injected by a non-adiabatic ramp does not
manifest itself as an effective temperature, even for ramp
time as low as τ = J/10 (compare supplemental infor-
mation Fig. S2). This finding is consistent with previous
reports that the integrability of the system means that
quenching of a LL from one time independent Hamil-
tonian to another preserves the basic power law decay
[34–37].

The middle and lower panels of Fig. 2 study two exam-
ples of the case (a2) where the perturbation is expected
to shift the system from one point in the CDW regime
to another. We again find that after a transient period
. 100/J the system evolves to a steady state, but in
contrast to the LL to LL case we find strong dependence
on the ramp time; note in particular the ramp speed-
dependent exponential decays at large j. Comparison of
the two cases indicates that the time scale governing the
ramp speed dependence is the inverse of the gap ∆eff of
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FIG. 3. Main panel: Time-averaged density-density correla-
tion function C(j) (solid lines) for different Jτ and U/J . The
other parameters are Ω/J = 10, F0/Ω = 1 and T/J = 0. The
T = 0 equilibrium prediction with J → Jeff = J0(E0/Ω)J
(dark dashed lines) compares well to the time averaged re-
sults only in the limit of large Jτ . The light dashed lines
are the undriven equilibrium results. Inset: Effective tem-
perature (crosses) as function of τ extracted by fitting the
slope of the exponential tail of the U/J = 1.7 and U/J = 4
lines in the main panel. One of these fits (U/J = 1.7 and
Jτ = 0.5) of the slope of the exponential tail in j is shown in
the main panel by open circles. The approximate prediction
T eff/∆eff = a∆τ sinh (bτ∆) is the dashed line (see SI [26]).

the final state (obtained from Bethe ansatz using Jeff and
U).

Fig. 3 considers the case (a2) in more detail, plotting
the j dependence of the logarithm of |C| for different
ramp speeds and initial correlation strengths. Compari-
son to the equilibrium behavior suggests that the energy
put into the system by a rapid ramp produces an effective
temperature Teff . The inset shows the effective temper-
ature (see supplementary information [26]) defined from

C(j) = C0e
−∆eff

Teff (C0 is fitting constant). We see that
for sufficiently adiabatic ramps, the effective tempera-
ture becomes unobservably small, but we believe that
for all ramp speeds Teff 6= 0. Thus we argue that a non-
adiabatic ramp creates a density of defects (as would also
be created by a non-zero temperature) which are essen-
tially randomly distributed and do not annihilate over
the time scale of our simulations. We finally note that
although the long distance behavior is consistent with a
nonzero temperature, the entire j dependence cannot be
described with a unique temperature/gap pair. As can
be seen from the offset between the open circles and the
solid line, the long distance decay is characterized by a
prefactor different from the thermal equilibrium result.
Relatedly, the open circles agree very well with the short
time behavior (see SI for more information [26]).

Very similar physics is obtained in the subgap regime
(regime (b)). We find the same dependence on ramp
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FIG. 4. Main Panel: Time-averaged density-density corre-
lation function C(j) (lines) for different E0/Ω. The other
parameters are Jτ = 4, Ω/U = 0.6, U/J = 16 and T/J = 0.
Inset: comparison of Eq. (3) for effective hopping generated
by sub-gap drive (solid line) and deduced from fits of the data
shown in the main panel to the equilibrium T − 0 formula for
the long distance limit of C.

speed as in case (a2). Thus, in Fig. 4 we present only
results in the quasi-adiabatic limit. For the case consid-
ered the long-time CDW amplitude is smaller than the
initial amplitude (drive leads to weaker correlations), but
with a non-monotonic dependence on the ratio of drive
strength to frequency. The inset confirms that the Jeff

obtained by analysing the data in the main panel agrees
perfectly with our theoretical prediction Eq. (3). Re-
markably, equation (3) describes a highly tunable non-
monotonic control of the ration U/J either to larger or
smaller values, which is beyond the control obtained in
the Magnus regime (see SI [26]).

We finally show in Fig 5 the case (a3) in which the
drive tunes the system across the quantum critical point
separating the LL and CDW phases. The Jt = 20 (low-
est (black online)) curve is very similar to the short time
behavior observed in the CDW to CDW quench (cases
a2,b). where C decreases with increasing j. This is qual-
itatively consistent with a CDW-like phase with ampli-
tude exponentially decaying at large distances. But at
slightly longer times (Jt ∼ 25) a phase slip-anti phase
slip pair appears: as j is increased the amplitude goes
to zero, and then increases again but with the opposite
phase (maxima in the positions where an extrapolation
of the small j curve would predict minima), then the am-
plitude again goes to zero and then the oscillations are
in phase with the small j ones. The phase slip and anti
phase slip separate rapidly in space, then remain at a
roughly fixed distance for a time interval ∼ 100/J and
then re-coalesce leaving a single phase regime (see inset).
Such phase slip-anti phase-slip pairs were not observed
in any of our CDW → CDW cases (see SI [26]). Thus,

FIG. 5. Main panel: The correlation function C(j) at differ-
ent times averaged over one drive period for the Kibble-Zurek
(a3) case. Lines are shifted vertically for clarity of depiction;
the midpoint of the oscillation is zero. The dashed black line
gives the asymptotic value expected at large j from a ground
state calculation using the Magnus formalism, shifted to cor-
respond to the longest time case. Inset: time evolution of the
phase averaged over the drive period. Light and dark gray
denote the phase of C +1 and −1 with respect to the small
j oscillation, respectively. The parameters are U/J = 0.95,
E0/Ω = 1.5, Jτ = 4 and T/J = 0.

we interpret the phase/anti-phase slip pairs as quantum
defects produced a la Kibble-Zurek [24] because the tra-
jectory in parameter space passes close to the quantum
critical point.

The first distance at which the phase slip-anti phase
slip pair appears is somewhat dependent on ramp speed
and drive strength, as is the time over which the phase
slip and anti phase slip exist, but in all cases we have
investigated the first time at which the pair appears is
about the same (Jt ∼ 30). The relatively weak depen-
dence of many of the phase slip properties on parameters
(see SI [26]) may be related to the logarithmic scaling
associated with the Kosterlitz-Thouless-like criticality of
the model at U = J . Note that unlike the defects which
give rise to the exponential decay, these instantons anneal
out in a finite time.

In summary, this paper has established DMRG as an
efficient tool to study Floquet engineering in interacting
quantum systems in situations where heating can be ne-
glected over a wide time range. In this wide time range,
it is generally accepted [9–14] that the system is in a
”pre-thermal” state described by a diagonal density ma-
trix. we investigated three different Floquet engineering
cases (LL→ LL, CDW→ CDW and LL→ CDW), find-
ing three different types of pre-thermal states. In the LL
→ LL case the energy put into the system as the drive
is turned on does not manifest itself as an effective tem-
perature. On the other hand in the CDW → CDW case
the energy does lead to a behavior closely analogous to
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that found in thermal equilibrium, while the key feature
of the LL → CDW case is an interesting generation of fi-
nite lifetime quantal defects if the drive moves the system
across a quantum phase transition. We also derived and
numerically verified an expression for drive-induced pa-
rameter changes that goes beyond the standard Magnus
expression and admits a weakening as well as a strength-
ening of the effective correlation parameter. Our work
opens many directions for research.

The methods presented here can be applied to
many other one dimensional situations including ladders,
higher-spin and longer ranged interaction spin chains and
doped systems. This work sets the basis for the study of
interacting spinful fermions of relevance to quasi-1D con-
ducting materials such as Li0.9Mo6O17 (purple bronze)
[39], the organic salt TTF-TCNQ [40], or NbSe3 [41].
NbSe3 in particular may be particularly amenable to Flo-
quet engineering because its CDW gap scale is in the
mid-infrared [41], a region readily accessible by modern
high pulse-energy lasers.

Other future directions include a study of the effect
of pulses of finite duration. On the analytic side, an
improved understanding of the LL → CDW quench is
urgently needed.
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