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Abstract

Shear transformation is the elementary process for plastic deformation of metallic glasses, the

prediction of the occurrence of the shear transformation events is therefore of vital importance to

understand the mechanical behavior of metallic glasses. In this letter, from the view of potential

energy landscape, we found that the protocol-dependent behavior of shear transformation is gov-

erned by the stress gradient along its minimum energy path and we propose a framework as well

as an atomistic approach to predict the triggering strains, locations, and structure transformations

of the shear transformation events under different shear protocols in metallic glasses. Verifica-

tion with a model Cu64Zr36 metallic glass reveals that the prediction agrees well with athermal

quasi-static shear simulations. The proposed framework is believed to provide an important tool

for developing a quantitative understanding of the deformation processes that control mechanical

behavior of metallic glasses.
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The lack of long range order in metallic glasses (MGs) imparts them with unique me-

chanical properties [1–5]. It also imposes great challenges in understanding their mechanical

behavior, since models based on dislocations, which control the plastic deformation in crys-

talline materials, are not applicable. Substantial efforts have been devoted to develop new

models [6–12] that can account for the mechanical behavior of MGs. One common feature

of many such models is that the local rearrangement of small numbers of atoms, referred to

as a shear transformation (ST), is generally accepted as the elementary process for plastic

deformation in MGs. A thorough understanding of the ST events is believed to be the key

to elucidate the plastic response and failure modes of MGs. In this regard, it has been

argued that ST events correlate with “regions of high free volume”, “soft spots”, or “low-

est frequency normal mode” [12–17]. Nonetheless, it was found that the triggering of ST

events is rather protocol-sensitive [18], suggesting that the structural information examined

by previous models is insufficient to draw a full picture of the activation of the ST events. In

this letter, we will show that information on the stress gradient of the energy landscape is of

vital importance to understand the protocol-sensitive behavior of the ST events. And by ex-

ploring the energy landscape, we propose a theoretical framework to predict the occurrence

of ST events under different shear protocols, including their triggering strains, locations and

structure transformations.

Following the analytical framework proposed by Maloney et al. [12], under athermal

quasi-static shear, the motion of an amorphous system can be expressed as

dr

dγ
= −H

−1 ·Ξ, (1)

where r = {ri(γ)} are the atomic positions of the system in a reference cell [12], γ is

the macroscopic shear strain, H = (∂2U/∂ri∂rj) is the Hessian matrix, U = U(r, γ) is the

potential energy, and Ξ = (∂2U/∂ri∂γ). Eq. 1 can be further decomposed into the directions

along the eigenvectors of the Hessian matrix as [12]

dr

dγ
= −

∑

p

ξp
λp

Ψp, (2)

where Ψp is the eigen vector of the Hessian matrix, λp is the eigen value, and ξp is the

decomposition factor of Ξ: Ξ =
∑

p ξpΨp. Eq. 2 shows that the weight factor ξp/λp flags the

mode that dominates the motion of the system. That is, modes with a large ξp/λp ratio will

dominate the motion of the system. It has been argued that low frequency modes with small
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values of λp correspond to the dominating ones [12, 16]. However, we will show later that

ξp is the key to understand and to predict the protocol-dependent behavior of the triggering

of the ST events, since it incorporates the protocol information, and therefore ξp/λp rather

than λp is the quantity of concern. For simplicity, let us first consider a scenario where

only one dominating mode exists, the multi-dimensional problem can be simplified into a

one-dimensional one. Assuming that the dominating mode Ψ∗ remains unchanged under

different macroscopic shear strain levels (γ), the motion of the system can be represented by

the variation of the reaction coordinate x which satisfies r−r0 ≈ xΨ∗, where r0 represents

the initial configuration at the reference macroscopic shear strain γ0. The equation of motion

Eq. 2 can be rewritten as

dx

dγ
= −

ξ∗

λ∗
= −

∂

∂x

(

∂U

∂γ

)(

∂2U

∂x2

)−1

= −V
∂τ

∂x

(

∂2U

∂x2

)−1

, (3)

where ∂U
∂γ

= V τ is used in the deduction. Clearly, in the one-dimensional case, ξ∗ = V ∂τ
∂x
.

As has been demonstrated in our previous work [19], Eq. 3 can be solved by numerical

integration if the whole one-dimensional energy landscape is known. Supposing there exists

a first order saddle point for the associated ST event at the reference strain level locating at

xs(γ0) = x0
s, with an energy barrier of Q(γ0) = Q0. If the corresponding minimum energy

path (MEP) can be approximated by a cubic polynomial (which has often observed in MGs

as a fold catastrophe [12, 20]), and the stress gradient ∂τ
∂x

remains constant for any x, then

the solution of the above equation of motion can be expressed analytically, and information

on the initial minimum and the transition state configuration at the referential strain level

will be sufficient to define the unknown parameters [19]. Especially, the critical macroscopic

shear strain at which the ST event will be triggered would be given by [19]:

γc − γ0 = −
3Q0

2V∆τ0
= −

λ∗x0
s

4V ξ∗
, (4)

∆τ0 =
∂τ

∂x
x0
s = τ(x0

s, γ0)− τ(0, γ0).

Although the above deduction is based on a scenario with only one dominating mode,

it can be easily proven that the solution of Eq. 5 is also valid in case multiple dominating

modes exist in the system, only if they are independent from each other. This requirement

will be satisfied when the ST events are sparse and localized in space. Eq. 5 suggests that

the mode with a small eigen value λ∗ while a large stress gradient (hence a large ξ∗) — in

turn a large ξ∗/λ∗ ratio — will reach the critical/triggering macroscopic shear strain γc first.
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In other words, the ST events in an athermal quasi-static shear process correlate with modes

with a large ξ/λ ratio. To clearly reveal the quantity that governs the protocol-dependent

behavior of STs, Eq. 5 is rewritten as

γc,αβ − γ0,αβ = −
3Q0

2V∆τ0,αβ
= −

3Q0x
0
s

2V

(

∂ταβ
∂x

)−1

, (5)

by incorporating the shear protocol explicitly, where α, β enumerates x, y, or z (α 6= β).

One sees clearly that the protocol dependence of the ST event originates from the stress

gradient
∂ταβ

∂x
of the corresponding mode (or MEP), since Q, V and x0

s are apparently

protocol independent. Depending on the orientation of the macroscopic shearing imposed,

the variation of the shear stress can be either uphill or downhill, i.e., the shear stress gradient

can be either negative or positive. Its sign determines whether the ST event can be triggered

in the current athermal shear direction or not, while its magnitude together with other terms

in Eq. 5 determines the triggering strain of the ST event. In the supplemental material, the

stress variation along the MEP of a typical ST event is shown for reference. Whereas, by

exploring the energy landscape of the MG or at least locating the first order saddle points

corresponding to all possible ST events, Eq. 5 enables one to predict the triggering point of

each event when the MG is subject to shear.

To this end, several methods have been developed during the past years to search for the

first order saddle points of a given system, among them the activation-relaxation technique

nouveau (ARTn) [21–23] is the most widely used one in exploring the energy landscape of

metallic glasses [24–28] as prior knowledge of the final state is not required. In this letter,

ARTn will be employed to harvest the ST events in a Cu64Zr36 MG model, which contains

10000 atoms in total and was generated with a cooling rate of 109 K/s. This model was

also used in our previous work [19]. The “activation” was initiated by imposing a random

displacement to the local cluster centered on a chosen atom with a radius of 3.7 Å, which

corresponds to the first minimum of the pair correlation function of the Cu64Zr36 MG.

During the “relaxation” process, a force tolerance of 5×10−3 eV/Å was used for converging

to the saddle points and a relatively strict tolerance of 1× 10−4 eV/Å was adopted for the

local minima. In principle, to predict all the ST events that will be triggered during the

deformation process, one needs to identify all the unique events in the system. While in

practice, a reasonable prediction can be made by sampling a relatively limited

number of first order saddle points harvested. One possible reason is the bias of
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FIG. 1. The distribution of triggering strains (between −100.00% and 100.00%) for xy shear of all

the events harvested. The inset highlights the distribution of triggering strain between 0.00% and

30.00%.

ARTn method towards low barriers [29], but this problem has not been discussed

extensively in the literature and further work is needed to confirm the ability

of ARTn to sample low energy barriers comprehensively. Inasmuch, multiple

activations were attempted for each cluster until 20 events were found and 200, 000 events

in total were therefore harvested for the unstressed glass model. With the information

obtained from the ARTn calculations, the triggering strains for each event under different

loading conditions was then estimated following Eq. 5.

Fig. 1 shows the distribution of the deduced triggering strains for the ST events harvested

upon xy shearing. It is seen that under small strains, only relatively few ST events can be

triggered, while at large strains large number of events can be triggered. Nevertheless,

for events with large predicted triggering strains, many of the events are correlated rather

than independent from each other. As a result, the applicability of the present approach

at this regime is in question. We will therefore focus on the events with small triggering

strains which are independent to each other (triggered in different regions). There are

18 events with triggering strains in the range of 0.00% < γxy < 5.00%, and only four of

5



0.00 0.01 0.02 0.03 0.04 0.05
γ

xy

0.5

1.0

1.5

τ x
y 

(G
Pa

)

Loading
Unloading

1st ST

2nd ST

3rd ST

4th ST

2nd  ST recovered

1st  ST recovered

FIG. 2. Loading (blue line, from shear strain 0.00% to 5.00%) and unloading (red line, from shear

strain 5.00% to 0.00%) stress-strain curves for xy shearing. The loading curve is shifted upwards

by +0.005 GPa for clarity. Four shear transformation events were found corresponding to the stress

drops on the loading curve. The first two events was recovered during the subsequent unloading

deformation.

them are found to be distinct by comparing their transition state and minimum-energy

configurations: the same event can be searched multiple times by ARTn when initiated by

different perturbations. The full MEP of these four events are then calculated by using the

nudged elastic band (NEB) method. Based on the information from the NEB calculations

the respective triggering strains of these events are re-predicted (refined) by using the full

numerical integration [19] instead of the analytical approximation of Eq. 5. Two more events

are ruled out according to the re-prediction (The appendix in Ref. [19] illustrated a typical

example that should be ruled out). Thus, only two events are predicted to be triggered with

critical shear strains in the range of 0.00% < γxy < 5.00%.

Similar analysis are also performed for xz and yz shearings, and in total 7 distinct events

that can be triggered within a macroscopic strain of |γα,β| = 5.00% are identified upon all 6

simple shearings.

To confirm the predicted triggering of these events, athermal quasi-static shear (AQS)
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FIG. 3. The analytically predicted triggering strains (red circles, following Eq. (5)) and the numer-

ically predicted triggering strains (blue squares, following the full numerical integration [19] versus

the AQS values).

simulations [12] with simple xy, −xy, xz, −xz, yz and −yz shearings are performed at

a step size of 1 × 10−5. Fig. 2 shows the stress-strain curve for the xy shearing, where

four sudden drops of the stress are identified from the loading curve for γxy ≤ 5.00%.

Each drop should correspond to an ST event. By comparing the triggering strains of these

events to the predicted ones, one finds that the 3rd and the 4th AQS events match well

with the two predicted ones upon xy shearing. Further analysis reveals that each of the 7

predicted distinct events can be matched with a triggered AQS event, and Fig. 3 compares

the predicted triggering strains with their respective AQS counterpart. One sees that the

agreement is reasonably good, with a root mean square error of 0.80% between the triggering

strains from AQS and the prediction.

The ARTn method also reveals the structure transformations of each event, which can be

compared with AQS simulations. To achieve this, the von-Mises atomic shear strains [30] are

evaluated by taking the initial undeformed configuration as the reference. Fig. 4 shows the

shear transformed atoms for each independent event, by selecting those atoms with a atomic

von-Mises strain greater than 0.01 as “shear transformed atoms”. One sees from Fig. 4 that

the shapes and locations of the local clusters associated with these events predicted based on
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FIG. 4. Comparison of the local configurations of the ST events between the predictions and AQS

simulations. Atoms were colored according to their respective atomic von-Mises strain [30] taking

the initial undeformed configuration as a reference, and only those with an atomic von-Mises strain

greater than 0.01 are shown. For each case, the left one is identified by AQS loading and unloading,

and the right one is predicted based on ARTn. The triggering strains calculated from Eq. (5) and

simulated from AQS are annotated around local cluster. All the predicted triggering strains are

close to simulation results, except for the right one in (e). The possible reason is discussed in the

text.

ARTn calculations agree well with those from AQS simulations, suggesting that the current

model is indeed capable of predicting the occurrence of the ST events and the locations of

STZs with reasonable accuracy. The predicted structure transformations of those ST events

were also further confirmed by comparing the displacement field of those “shear transformed

atoms”, and the relative errors (defined in supplemental materials) are within 2%.

Nevertheless, we are also curious about the first two events observed in Fig. 2. Why are

they not predicted by the current model? To reveal the reason behind this, AQS unloading

simulations were also performed. A careful inspection of the unloading curve shown in Fig. 2
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finds that the first two events are recovered during the unloading process, while the other

two are not: a “negative” (reversed) loading is needed for the latter two to be recovered.

This suggests that in MGs, at least two kinds of shear transformations can be triggered:

one of them can be seen as a local “anelastic” transformation [8], as there is local atomic

rearrangement that can be recovered upon unloading. The other one is a “viscoplastic”

transformation [8] that cannot recover spontaneously upon unloading. The first order sad-

dle saddle point of an ST event exists only when the macroscopic shear strain lies in between

the triggering and the recovering strains of the event. For the “anelastic” events, the asso-

ciated local clusters are unstable in the undeformed state, and consequently no “transition

state” can be found, no matter what sampling/searching technique is employed. The events

harvested here correspond to the latter case only, which have well-defined equilibrium and

transition states.

One may notice that the current approach made a rather poor prediction on the triggering

strain for one of the events. As is seen in Fig. 4(e), the AQS event that occurs at γxz = 4.86%

is predicted to have a triggering strain of −24.43%. Detailed analysis of the deformation

process associated with this event reveals a neighboring cluster that undergoes “anelastic”

event at a macroscopic strain of γxz = 2.35%, which means that these two events are cor-

related with each other, violating the basic assumption that the ST events are independent

from each other. To confirm this, we re-sampled the energy landscape of the local region

associated with this event, taking a macroscopic strain of γxz = 4.00% as the referential

state, where the interfering event has been triggered. The predictions made based on the

newly sampled MEP gives a triggering strain of 4.98%, which is now close to the AQS result

of 4.86%. Excluding this case, we would like to emphasize that nearly all the “viscoplastic”

transformations were successfully predicted as seen in Fig. 4. To further demonstrates

the validity/reliability of the current approach, three other MG samples were

also tested. The details of samples can be found in the supplemental material;

the correlation between the AQS triggering strains and the predicted ones in

all the four samples is shown in Fig. 5. It is seen that the present model works

very well for events with small strains (< 2%), while the scatter increases sub-

stantially for large strains where high-order nonlinear effect becomes important.

In summary, the protocol-dependent behavior of ST events is found to be governed by the

9



-0.04 -0.02 0.00 0.02 0.04
AQS triggering strain

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

Pr
ed

ic
te

d 
tr

ig
ge

ri
ng

 s
tr

ai
n

Sample 1
Sample 2
Sample 3
Sample 4
Identity line

FIG. 5. The AQS triggering strains versus the predicted ones (following Eq. (5)) for all predicted

events in the four samples investigated.

stress gradient along the MEP of the events, and a framework to locate and characterize the

occurrence of ST events in metallic glasses is proposed. Verification based on atomistic simu-

lations reveals that by effectively capturing the features of the PEL associated with the shear

transformation events, the predicted triggering strains, locations and structure transforma-

tions agree well with that from athermal quasi-static shearing simulations. Nonetheless,

the “anelastic” events that would recover upon unloading were not captured. Exploring

the PEL is known to be an indispensable way to understand the complex phenomenology

in metallic glasses [31–33]. The thermal activation events in the PEL has been discussed

and used to understand the structure and energy evolution based on thermal histories [28].

In terms of the mechanical activation of those events, the presently proposed framework

as well as the verification demonstrated suggests that it is possible to model and predict

the mechanical behavior of metallic glasses by examining the PEL, which therefore provides

an important tool to uncover the secrets underlying the structural state and, thereby, the

mechanical behavior of metallic glasses.
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