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The thermal properties of a material with a spatio-temporal modulation, in the form of a traveling
wave, in both the thermal conductivity and the specific heat capacity are studied. It is found that
these materials behave as materials with an internal convection-like term that provides them with
non-reciprocal properties, in the sense that the heat flux has different properties when it propagates

in the same direction or in the opposite one to the modulation of the parameters.

An effective

medium description is presented which accurately describes the modulated material, and numerical
simulations support this description and verifies the non-reciprocal properties of the material. It
is found that these materials are promising candidates for the design of thermal diodes and other
advanced devices for the control of the heat flow at all scales.

7 The research on materials with non-reciprocal thermal
s properties has received a great attention in recent years.
o These materials have different propagation properties of
10 the thermal energy along two opposite directions. With
u the so-called thermal diode being the most immediate
12 application of these structures|l], other devices and ap-
plications are easily envisioned, like thermal transistors
11 and even logic circuits|2].
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15 Non-reciprocal materials have been properly studied
theoretically and experimentally at different scales |3-6],
7 and it has been demonstrated that the realization of a
18 non-reciprocal material requires the use of a combina-
10 tion of non-linear and asymmetric structures|7]. How-
20 ever, the realization of non-reciprocal materials based on
a1 non-linear elements limits their applicability, since non-
linearity does not occurs at all temperatures and scales,
23 s0 that we can find that the rectification properties of the
2 materials are efficient in only a short range of tempera-
25 ture.
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%  In this context, metamaterials, which are artificially
structured materials with a priori-designed properties,
2s have overcome one of the major drawbacks of common
20 materials, since their properties depend on the internal
artificial structure and not on intrinsic properties of the
31 constituent materials, which in turns allow us to decide
3 at which scale, frequency or temperature range we want
to operate[8]. Here, a special type of metamaterial is em-
ployed presenting non-reciprocal properties, which con-
sists in a material where the thermal properties are func-
tions of both space and time in a wave-like fashion. This
special type of modulation has been studied in elastic
and acoustic materials[9-12], whose non-reciprocal prop-
erties for the propagation of waves have been widely
demonstrated. We will apply these ideas to the diffusion
equation describing thermal waves in solids, and non-
reciprocal thermal transport will be found.
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s We present therefore an alternative mechanism for the
realization of non-reciprocal thermal materials which can
»s be applied to any scale, as long as the thermal transport
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be dominated by diffusion. It is demonstrated that, when
the spatio-temporal modulation of the thermal properties
of a material is of the form of a traveling wave, the mate-
rial presents non-reciprocal thermal transport. Moreover,
it is demonstrated that an effective medium description
is possible for such a material, in which it is described
as a homogeneous solid with constant constitutive pa-
rameters (in both space and time) but in which the tem-
perature field satisfies a convection-diffusion equation. In
other words, it is demonstrated that, although there is no
transport of matter in the solid material, in an effective
way an internal convective term appears, which is respon-
sible of providing non-reciprocal properties to the solid
even in the stationary regime. Analytical expressions are
given for the effective parameters and time-domain nu-
merical simulations show a perfect agreement with the
effective medium description.

Figure [0l shows an example of realization of a mate-
rial with a spatio-temporal modulation in its constitu-
tive parameters. Panel a) shows a homogeneous material
B with a thermal conductivity op. Let us assume that
the material’s conductivity is sensitive to the applica-
tion of some external field £, which can be the electric,
magnetic or acoustic fields, for instance. Then, when
the external field is applied, the conductivity changes to
ca = op + xE, with x being some coupling constant.
Panel a) shows the situation when the external field is
turned off, and panel b) shows a situation in which we
have turned on the external field but only in the regions
marked by the arrows, so that it changes the material
from op to o4 only in the neighborhood of the arrows.
We have therefore induced a layered material by means
of the external field E(z), so that the conductivity of the
material is now o(z) = op+ (04 —op)rect(2mz/d). Since
the external field is induced artificially, we can set up the
origin of the modulation, as shown in panel c¢), where it
has been displaced a quantity A, so that the conductivity
isnow o(z) = op+ (04 —op)rect(2n(z — A)/d). Finally,
if the external field is synchronized so that the spatial
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modulation is traveling along the x direction at a speed
v, as represented in the panel d), the induced conductiv-
ity will be a function of both space and time of the form
o(x) =op + (04 — op)rect(2n(x — vot)/d). The reader
interested in a possible mechanical realization of these
materials can find a proposal through the supplementary
movie “chaincylinders.gif”, and its brief discussion in the
Supplementary Material.

b)
B A B A B A B A B

External field E=0

<) d)
ABABABAB

A=Vt External field E(x-vot)

a)

External field E(x)

A External field E(x-A)

_— —  —

FIG. 1. Schematic representation of a possible realization of
a material with a spatio-temporal modulation in the conduc-
tivity and the mass density.

The procedure described before shows that in order to
have a spatio-temporal modulation in the thermal prop-
erties of a material we need essentially a tunable mate-
rial whose control parameter could be modulated in both
space and time. The domain of tunable metamaterials is
broad enough to allow us to consider this modulation fea-
sible, so that in the most general case we can postulate
that we can obtain a materials whose thermal properties
modulated in a wave-like fashion, o = o(x — vot) and
p = p(x — vot), with o and p being periodic functions
of n = x — vyt with period d. In a material with these
properties, the energy balance is described by means of
the local diffusion equation

9
ox

oT oT
oz — vot)a = p(z — ’UOt)Ea

where the heat capacity has been set to 1, in order to
simplify the notation, however it is evident that in the
above equation p means the specific heat capacity. It has
to be pointed out that equation () is a particular case
of a more general problem in which a term containing
the temporal derivative of p should be added, however
this term is canceled by the external field inducing the
modulation, as explained in the Supplementary Material,
which include reference [13)].

In the so-called homogenization limit the spatio-
temporal variation of the constitutive parameters is not
“visible”, and the material is perceived as a homogeneous

(1)
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material with some effective properties. In the following
lines it will be shown that the homogeneous version of
equation ([Il), which defines these effective parameters,
contains additional constitutive parameters that induces
non-reciprocity in the effective material.

The homogenization of equation () can be done more
efficiently under the change of variables n = x — vgt and
T =t, so that the diffusion equation takes the form

v (e ) = o057~y

an o "on

which is a differential equation in which the coefficients
depend only on the variable n. Equation [2] is a partial
differential equation in the variables n and 7 in which the
coefficients are periodic functions of n with period d, so
that Bloch theorem applies and the solutions for the tem-
perature field are linear combinations of eigenfunctions of
the form

(p(n)T),  (2)

T(n,7) = e Ene ¥ p(n), (3)
with ¢(n) being a d-periodic function of the variable n
with the same periodicity of o and p.

The spatio-temporal behavior of the temperature field
is therefore composed of the “macroscopic” function
e~ e modulated by a “microscopic” function ¢(n)
over the period d. When the spatial variations of the field
are larger than the typical period d equation (@) can be
replaced by a “homogenized” version with constant co-
efficients with the same solution Q = Q(K). Once the
equation in the traveling frame is homogenized, we can
return to the frame at rest to study its properties how-
ever, when we return to the system at rest, we don’t re-
cover a Fourier-type differential equation (like equation
(@) with constant coefficients, as should be expected,
but we obtain a more complicated equation, in which
additional constitutive parameters appear (see the Sup-
plementary Material for further details),

OUT) o) o) LA
7 Tox? ot o drot

Therefore, the homogenized equation is the convection-
diffusion equation with two additional coefficients, S and
S’, which are the thermal equivalent of the Willis coef-
ficients found in the elastodynamics of inhomogeneous
media . These coefficients are coupling terms re-
lated with the non-symmetry of the unit cell, and al-
though they are null for symmetric periodic materials ﬂﬂ],
the non-reciprocity induced by the special modulation of
the materials considered here makes them different than
zero. These terms are relevant especially in the dynamic
or transient regime, however in this work we are more
interested in the non-reciprocal properties of the mate-
rial in the nearly stationary regime, for which a further
discussion about these terms is beyond the objective of
the present work.

+0S L (5 + 8
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The responsible of the non-reciprocal properties of the
material in the stationary regime is the convective term
C9,T appearing in equation (). It is interesting the
relationship between the convective term C' and the ef-
fective mass density p*. It could be thought that, since vq
is constant through the material, the effective convective
term in the homogenized version of equation (2)) would
be simply vgp*. The consequence of this property would
be that, when returning to the reference frame at rest,
the convective term would disappear and then we would
recover the diffusion equation with constant coefficients
(plus the Willis terms). However, as it is demonstrated
in the Supplementary Material, the effective convective
term does not satisfy this condition, since although the
variation of vgp is the same as of p, they appear multi-
plying a different operator in the equation, the temporal
derivative and the spatial derivate, so that their role is
completely different in the equation and, therefore, in the
frame at rest we find that the diffusion equation (I has
become the diffusion-convection equation (@), which is
known to be non-reciprocal due to the convective term

C.

Therefore, the spatio-temporally modulated material
behaves, in the homogenization limit, as a homogeneous
material in which a convective term appears, so that the
diffusion of heat will have non-reciprocal properties. It
must be pointed out that the convective term is not in-
duced by any transport of matter, as for sound propa-
gation in moving fluids and similar processes, but it is
induced by means of some external stimulus that mod-
ulates the properties of the material in a wave-like fash-
ion, so that we can have not only a solid material with
an internal effective convection, but we can have a finite
structure with convection without the need of letting the
flow of matter leave the structure.

For the analytical and numerical examples we propose
a sinusoidal modulation of the form

o(x — vot) = 0o [1 + A cos %T(ZU - Uot)] ; (5a)

p(x — vot) = po [1 + A, cos %ﬁ(:v - Uot)] ; (5b)

where the mass density and conductivity changes peri-
odically from py, = po(1 — A,) to ps = po(1 + A,) and
from op = 09(1 — Ay) to 04 = 00(1 + A, ), respectively.
The effective parameters for this modulation can be ap-
proximated by (see equations 25 in the Supplementary

Material)
o & oy [1—%1igr2], (6a)
o po [1—%215;2 | (6b)
§=48 _%CZAIEAU 1 fr?’ (6c)
O~ 27TdUo Ap2Aa : _fr2’ (6d)

where I" = ?ﬂ

Equations 7T(Iﬁ show that the effective conductivity and

mass density are both even functions of I', which means
that reversing the direction of the modulation has no ef-
20 fect on their values. Contrarily, both S and C' are odd
205 functions, which is obvious since these parameters are the
responsible of the non-reciprocal properties of the mate-
rial. When there is no traveling modulation (I' = 0),
both S and C are zero, the mass density is just the av-
erage mass density p* = po and effective conductivity
o* = 0¢(1 — A2/2), so that we recover reciprocity as ex-
pected. Interestingly, when vg — £oo the non-reciprocal
properties of the material also disappear, since S and C'
213 both tend to zero, and now the effective mass density
a0 is p* = po(1 — A2/2) and the effective conductivity is
as 0F = 0g. In this case the oscillations of the material’s
216 properties are so fast that the spatial variation almost
a7 disappear, therefore we can see an averaged material in
218 time, which in turns means that the non-reciprocal prop-
210 erties disappears. It is interesting to note how the expres-
20 sions for the effective parameters exchange their roles in
the limiting situation I' = 00 or I' = 0, due to the ex-
222 change of them in front of the space and time derivatives
223 in the diffusion equation. This simple analysis, which will
224 be verified later, shows that the larger “non-reciprocity”
25 is not obtained with the larger modulation velocity, but
26 that there is an optimum velocity for the design of non-
227 reciprocal materials.
Another interesting feature of equations (@) is that we
29 need a modulation of both the mass density and the ther-
23 mal conductivity to have non-reciprocity. This is indeed
a general result, as shown in the Supplementary Material,
212 where the effective convective term is shown to be

C=uwv Z p-c'G'xeraoaG
G/ ,G40

200
201
202

203

206
207
208
209
210
211

212

221

228

231

(7)

233 where the summation has to be performed for all the
23 reciprocal lattice points G = 27m/d, with m being an
235 integer. Xxgr¢ is an interaction matrix, and pg and og
26 are the Fourier components of the functions p(n) and
a7 o(n), respectively. Given that in the above equation the
238 summation excludes the term G = 0, it will be zero unless
230 'we have at least one pair (pg, o¢) for G # 0 different than
20 zero, that is, we need a simultaneous variation of both o
and p.

241
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This result shows that the origin of the convective term
in the effective material is due to a coupling between the
variation of the mass density and the conductivity, and
enforces its analogy with the Willis term and chirality in
electromagnetism.

In the stationary regime the macroscopic temperature
(T) is independent of time, and equation (@) reduces to

a(T)

LOX(T)
7 ox

0x?

(®)

whose general solution is given by

(T) = A+ Be*”, (9)
with @ = C'/o* being the convection-diffusion parameter
that quantifies the non-reciprocity of the material, as will
be demonstrated later on. For the harmonic perturbation
studied in the present example, we can approximate o by

2 r
ar~ AN

d P14 212 (10)

Figure [2 shows the dependence of this parameter as
a function 27T. In these examples p,/p, = 0.5 and
oa/op = 0,0.01,0.1,0.5 and 1, as indicated in the leg-
ends of the plot. We see that there is an optimum value
of I" for which we obtain the maximum value of o and,
as before for C, when I' — oo, « tends to zero and the
material becomes reciprocal.

15
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FIG. 2. Effective convection-diffusion coefficient as a function
of the non-dimensional modulation velocity I.

Numerical simulations by the Finite Element Method
(FEM) in time-domain have been performed. We have
assumed a one dimensional domain (a solid bar, for in-
stance) of length L = 10d, in which the initial temper-
ature is set to 0. In the “forwards” (F) configuration,
the temperature at the extreme x = L is fixed to 0 and,
for ¢t > 0, the temperature at x = 0 is set to Tp. In the
“backwards” configuration we have reversed the temper-
atures, so that at z = 0 the temperature is fixed to 0 and
for t > 0 the temperature is fixed to Ty at * = L. We
have selected the same parameters for p, and py as in the
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previous calculations, and the value of o, = 0.010. The
simulations have been performed for 271" = 0,0.3,1 and
10, whose corresponding values for «/d are 0, 0.52, 0.87
and 0.32, respectively. According to equation (@) and the
previously defined boundary conditions, the temperature
distribution in the bar in the stationary regime for the
forwards and backwards configuration is, respectively,

eaL ax

— €
{Tr)=To—z— (11a)
e —1
(Ts) = hor— (11b)

showing a non-symmetric profile in the forwards and
backwards configurations, as expected. The total heat
flux is composed of the diffusive plus the convective flux,
so that @ = —0*0,(T) + C(T), and it is clearly differ-
ent in the forwards and backwards configuration, since we
have @ = CTper /(1—e*t) and @ = —CTy/(1—eF).
Indeed, the ratio |®5/®r| = e~ ~ 0 is the definition of
a nearly perfect thermal diode, showing a very promiss-
ing application of these materials.

FigureBlshows the numerical simulations performed by
the comercial software COMSOL Multiphysics[1&] (blue
dots) at t = t; = 300dpy/op, together with the cor-
responding analytical solution given by ([Il). A space
element of size Ax = 0.1d and a time step of At
0.01dpp/op was enough to ensure a good convergence,
as it is demonstrated due to the perfect agreement with
the numerical and analytical solution, although an ad-
ditional modulation appears in the numerical simula-
tion. This modulation is due to the fact that in the
homogenized model we ignore the modulation function
¢(n) = ¢(x — vot), which is obviously included in the
numerical solution. Since the time is fixed to t = t¢ in
figure [l only the spatial variation of ¢ is detected, how-
ever the transient period and the time evolution of the
system can be seen in the Supplementary Movies tem-
peratureF.gif and temperatureB.gif, where the effect of
¢(n) is more evident, although the relevant information is
given by the analytical model shown in equation (). It
is obvious the diode-like behavior of the material, whose
non-reciprocal nature is manifested not only in the static
but also in the dynamic regime. The accuracy of the
analytical solution provides also a very powerful tool to
design more advanced devices based on these materials.

In summary, we have presented a structured solid ma-
terial with non-reciprocal effective thermal properties,
where the mechanism of non-reciprocity is due to an ar-
tificial convective term that appears in its effective be-
havior. The structured material consists of a modulated
solid in which the local thermal properties depend not
only on the position, but also on time, in such a way
that these parameters have a wave-like behavior. It is
shown that in the nearly-stationary regime the material
presents non-reciprocity in the diffusion of heat, and it is
shown how such a material can work as a thermal diode.



T/T,

T/Ty

FIG. 3. Temperature distribution of the spatio-temporally
modulated bar in the forward (upper panel) and backward
(lower panel) configurations.

s Several properties of the effective parameters are deduced
30 and an effective medium theory is developed. The ex-
a0 pression derived for the convective term shows that it
su is required a modulation in both the mass density and
si2 thermal conductivity, since this term appears as a cou-
a3 pling between the relative variations of both parameters.
s Coupling terms equivalent to the so-called Willis terms
s1s in elasticity or chiral coefficients in electromagnetism also
a6 appear, although their contribution is relevant only in the
a7 transitory or time-dependent regime. It is remarkable the
a1 fact that the non-reciprocal thermal effect presented here
is the result of the artificial internal structure of the ma-
terials, what makes that effect be scalable and therefore
useful in a wide variety of thermal problems and scales
where the heat transport be dominated by diffusion.
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