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Abstract

Multiple self-emission x-ray images were used to measure tomographically target modes 1, 2, and

3 up to the end of the target acceleration in direct-drive implosions on OMEGA. Results show that

the modes consist of two components: the first varies linearly with the laser beam-energy balance

and the second is static and results from physical effects including beam mistiming, mispointing,

and uncertainty in beam energies. This was used to reduce the target low-modes of low-adiabat

implosions from 2.2% to 0.8% by adjusting the beam-energy balance to compensate these static

modes.
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In laser-driven implosion experiments, a laser illuminates a spherical target which leads

to the ablation and target acceleration through the rocket effect. This method is widely

used to study plasma physics [1] including high-energy-density physics [2–4] and inertial

confinement fusion (ICF) [5, 6]. In all cases, maintaining spherical symmetry throughout

the implosion is critical to obtaining a one-dimensional behavior that maximizes the internal

energy of the hot-spot plasma at final compression. In ICF experiments, a capsule filled with

deuterium (D) and tritium (T) is imploded to create a self-sustained fusion burn to produce

a net energy gain. Several simulations and comparisons with experiments have shown that

target low-mode nonuniformities lead to a severe reduction in the implosion performance

because of increased residual kinetic energy during stagnation and uneven compression, re-

sulting in reduced hot-spot pressure and truncated burn [7–10]. This degradation was shown

to be significant for modes l ≤ 3, where l is the order of the modes of the spherical harmonic

decomposition of the target shape [9, 11]. Consequently, reducing low-mode nonuniformities

has been identified as one of the critical steps in demonstrating ignition at the National Ig-

nition Facility (NIF) [12–14], or conditions that are hydrodynamically equivalent to ignition

when scaled from tens of kilojoules implosions on OMEGA to megajoule energies on the

NIF [15–17].

Over the last decade, different experiments have shown that targets imploded with the

current laser facilities experience significant growth of their low-mode nonuniformities. Mode

l = 1 was typically inferred from properties of the final assembly including asymmetry in

its areal density [18], variation of its ion temperature along different lines of sight [19],

hot-spot motion [20], and asymmetric x ray emission of a Ti layer embedded at the inner

surface of the shell [21]. Modes l ≥ 2 were measured from the hot-spot shape [22, 23], x-

ray [24] or Compton [25] radiography, x-ray absorption spectroscopy [26], and self-emission

shadowgraphy [27].

Several studies have focused on the causes of the asymmetries and the development of

methods to correct them. In indirect-drive ICF (where the laser light is converted into x

rays before irradiating the target), the laser beam wavelength was modified to exploit cross-

beam energy transfer and improve the spherical symmetry of the hot-spot emission [22, 23].

The improvement, however, was limited because the observable (i.e., the imploded hot-spot

shape) was restricted to modes l ≥ 2 and was too indirect to give accurate access to the

three-dimensional (3-D) structure of the shell [11]. In direct-drive implosions (where the
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laser directly irradiate the target) [6], simulations have identified different effects that create

nonuniformities including beam pointing, beam timing, and beam-energy imbalance. Some

experimental improvement of the beam-power balance was performed [28]. Success has

been limited, however, in correcting all of them because of the difficulty in modeling and

quantifying each effect [29].

This Letter reports the first experimental demonstration, in direct-drive implosions on

OMEGA, that the target modes l = 1, 2, and 3 up to the end of the target acceleration

are the result of two components; a dynamic part that varies linearly with the beam-energy

balance modes, and approximately constant static modes. This result was used to reduce

the total target modes l = 1, 2, and 3 from 2.3% to 0.8% in low-adiabat implosions by

adjusting the beam-energy balance to compensate the static modes. Over three shots, the

3-D modes l = 1, 2, and 3 of the ablation-front surface of the imploding targets (called target

modes) were tomographically recorded from four lines-of-sight. The projected ablation-front

contours were measured with framing cameras using the x-ray self-emission shadowgraphy

technique [27, 30]. The projected ablation-front motions were obtained by comparing the

contour positions on the framing cameras with the corresponding contour positions measured

on a nonimploding solid-CH-ball shot. Results show a linear variation of the target modes

with the beam energy balance modes. The values of the low mode coupling coefficients (i.e.

the linear factor for each l) decreased with l. This was due to the individual beam shape

that modifies the laser illumination modes compared to the beam energy balance modes.

The static modes, evaluated on low-adiabat implosions, exhibit dominant modes l = 1 as

they experienced the largest coupling.

The experiments employed 60 ultraviolet (351 nm) laser beams at the OMEGA Laser

System [31]. The beams illuminated the target and were smoothed by polarization smooth-

ing [32], smoothing by spectral dispersion [33], and distributed phase plates (4.4-order super-

Gaussian with 95% of the energy contained within 820-µm diameter) [34]. A 2-ns-long square

pulse irradiated 866± 3-µm-diam., 19.2± 0.2-µm-thick, round CH capsules (1.03 g/cm3 CH

shells with mode amplitudes < 50 nm containing 17 ± 1.5 atm of D2) with an energy of

20.2± 0.4 kJ, resulting in an overlapped intensity ∼ 4.3× 1014 W/cm2. The beam-energy

balance was varied over three shots. An additional reference shot used a solid CH ball of

856-µm diameter. For each shot, two high-speed video cameras (1000 images per second)

were used to automatically position the target at target chamber center within 1.5 µm.
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FIG. 1: (a) Comparison of the self-emission images recorded on the second capsule shot (upper

figure) and the reference shot (lower figure). The black circles correspond to the inner edge contours

of the intensity peak. The image timings are the addition of the timings of the strip and the timings

inside the strip. The insert corresponds to the image recorded at 1.82 ns in the upper figure. (b)

Evolution of the angular variation of the difference between the contour radius and the averaged

contour radius [∆R(α)] for the images in the upper figure in (a). (c) Differences between the upper

and the lower figures in (a) in the contour center positions for images at similar locations (i.e.

recorded by the same pinhole) along x [orange circles (∆Rc|x)] and along y [blue squares (∆Rc|y)]

as a function of the averaged contour radius {〈R(α)〉[35]}; x and y directions are indicated in (a).

The error bars at the 90th percentile and the linear fits between 300 µm and 100 µm are plotted

(dashed lines in corresponding colors).

Four x-ray framing cameras, located at different lines of sight, used arrays of 16 pinholes

to get 40 ps (three cameras) and 200 ps (one camera) time-integrated images of the soft

x rays emitted by the irradiated target on four horizontal strips of a microchannel plate

(MCP) [36]. The cameras used magnifications of M = 6 (two cameras) and M = 4 (two

cameras) with pinhole sizes of 10 µm and 15 µm resulting in point spread functions with

full width at half maximum of dPSF ≈ 10 µm and dPSF ≈ 15 µm, respectively [27]. On all

cameras 25.4-µm-thick Be filters were used to record the x rays > 1 keV. For all imploding

shells, the strip activations were timed to ∼ 0.4 ns ∼ 1.2 ns, ∼ 1.5 ns and ∼ 1.8 ns, whereas

for the reference shots, they were synchronized to ∼ 0.2 ns after the beginning of the laser

pulse (defined as the 1% of the maximum intensity) [Fig. 1(a)]. The absolute image timings

were known within ±10 ps and the interstrip timings within ±2.5 ps [27, 37]. For each
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camera, the same pinhole array was used on all shots to maintain the distance between

images.

Each self-emission image was used to measure the projection of the ablation-front surface

on the diagnostic [30, 38] by tracking the inner edge contour of the intensity peak [Fig.

1(a)]. The recorded intensity was the strongest near the ablation front because the emitting

plasma had the largest density and the integration distance of the emission was the longest.

Just inside the ablation front, the recorded intensity dropped by a factor of 2 as the plasma

became optically thick, absorbing its emission and the emission coming from the back of the

target [insert in Fig. 1(a)]. The time integration and spatial convolution of the diagnostic

induced inward shift of the inner gradient constant on each image. For each image, the

angular variation of the difference between the projected ablation-front radius [R(α)] and

its average {∆R(α) = R(α)− 〈R(α)〉 where 〈〉 denotes the 2π angular average and α is the

angle going counterclockwise relative to the horizontal [Fig. 1(a)]} was determined [Fig.

1(b)]. The contour center was determined iteratively by fitting the contour with a circle. To

reduce the error, self-emission images were angularly averaged over 20◦, which was larger

than the radial convolution [= (360/2π)dPSF/ 〈R(α)〉 < 5◦] and smaller than the scale length

of the modes studied here [= 2π 〈R(α)〉 /l > 120◦]. The difference at an averaged radius of

150 µm [∆R(α)]150 and its associated error distribution [39] was obtained by linearly fitting

the evolutions of ∆R(α) with 〈R(α)〉 ranging from ∼ 300 µm to ∼ 100 µm. The contour at

150 µm was deduced [R(α)]150 = 150{1 + [∆R(α)]150}.
The projected motions of the ablation-front surface center during the implosion (∆Rc =

√

∆Rc|2x +∆Rc|2y where ∆Rc|x and ∆Rc|y correspond to the horizontal and vertical pro-

jected motions) were obtained by measuring the differences in the corresponding contour

center positions (i.e. recorded by the same pinhole) between the imploding capsule shot and

the reference shot [Fig. 1(c)]. Each contour center was corrected from the electrical-pulse

propagation that introduced a displacement along the strip. On the reference shot and on

the first strip of the capsule shots, the contour centers corresponded to the projection of

the initial target position on the diagnostic. For each capsule shot, to correct for differences

in diagnostic pointing and initial target center with the reference shot, the contour center

array was shifted and magnified to align the contour centers determined on the first strip

with the corresponding ones measured on the reference shot. The projected motion of the

ablation-front surface at an average radius of 150 µm (∆Rc)150 and its associated error dis-
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FIG. 2: (a) The four projections of the ablation surface determined at an average radius of 150 µm

{[R(α)]150} are oriented perpendicular to the lines of sight of the corresponding framing cameras.

The color bar shows the variation of the contour radii relative to 150 µm. (b) The 3-D motion of

the ablation front surface center at an average radius of 150 µm (orange arrow) corresponds to the

point that is at the minimum distance of the four green lines. The lines are defined by the lines

of sight of each framing camera shifted by the measured projected motions of the ablation front

surface [(∆Rc)150]. The figures are drawn for the second capsule shot.

tribution was obtained by linearly fitting the evolution of ∆Rc|x and ∆Rc|y with 〈R(α)〉
ranging from ∼ 300 µm to ∼ 100 µm.

The 3-D shape of the ablation-front surface at an average radius of 150 µm was deter-

mined by orienting the four projections [R(α)]150 perpendicular to the lines of sight of the

corresponding framing cameras [Fig. 2(a)]. Because of the 3-D nonuniformities, the centers

and averaged radii of the projections were slightly different to the center and averaged radius

of the ablation front surface. To account for this, one contour was chosen as a reference

and the other contours were shifted transversally and magnified to suppress their radial

difference with the reference contour at the two crossing points (i.e., where the polar and

azimuthal angles are the same).

The 3-D motion of the ablation front surface center at an average radius of 150 µm

(relative to the initial target center) was determined from the four measured projected

motions [(∆Rc)150]. The ablation front surface center was located along the lines defined by

the camera lines of sight shifted by the measured projected motions (plus the displacements

introduced during the 3-D shape reconstruction process). Therefore, it was obtained by

finding the point that is at the minimum distance between the four lines [Fig. 2(b)].

For the three shots, the target modes l = 1, 2, and 3 (rml ) at an average radius of 150 µm

(∼ end of target acceleration) were obtained by decomposing the 3-D shape shifted by the
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FIG. 3: Difference in the target modes (∆rml ) for (a) l = 1, (b) l = 2, and (c) l = 3 of the

ablation-front surface between shots 1 and 2 (orange points), 1 and 3 (blue points), and 2 and

3 (green points) as a function of the difference in the corresponding beam energy balance modes

(∆eml ). The linear fits (dashed black line) and the error bars are plotted.

3-D motion over spherical harmonics [R(θc, φc) =
∑3

l=0

∑l

m=−l

√
4πrml Y

m
l (θc, φc) where R is

the radius normalized to the averaged radius in percent (r00 = 100), (θc, φc) are the polar and

azimuthal angles along the oriented contours respectively, Y m
l (θ, φ) are the tesseral spherical

harmonics [40], and (θ, φ) are the polar and azimuthal angles respectively]. The errors in the

modes were evaluated by simulating the error distributions of (∆Rc)150 and [∆R(α)]150 and

fitting the calculated modes by normal distributions. Errors of ±0.15%, ±0.1%, and ±0.1%

were obtained at the 90th percentile for the modes l = 1, 2, and 3, respectively. Systematic

errors were evaluated using synthetic self-emission images [41] calculated postprocessing 3-

D simulations from ASTER [9] of the second capsule shot. Results showed that the target

modes l = 1, 2, and 3 reconstructed using the method presented above reproduced the

simulated target modes within ±0.04%.

The beam-energy balance modes l = 1, 2, and 3 (eml ) were determined by minimizing

A =
∑60

b=1

(

∑3

l=0

∑l

m=−l

√
4πeml Y

m
l (θb, φb)− Eb

)2

where Eb is the energy of the beams

normalized to the averaged beam energy in percent (e00 = 100%) and (θb, φb) are the polar

and azimuthal angles of the OMEGA beam ports, respectively. The first shot used a typical

beam-energy balance with a standard deviation of 2.5%. On the second and third shots,

the beam-energy balance was varied to change the modes with a larger variation for modes

m = 0. The beam energies were measured with integrating spheres within (Eb)Err = ±0.5%

that were absolutely calibrated within ±2% with calorimeters. This resulted in the same

relative error for all modes of (Eb)Err/
√
60 = ±0.06%.

Figures 3 shows that, for each l, the target modes varied linearly with the beam-energy

balance modes with low-mode coupling coefficients (Cl = 〈∆rml /∆eml 〉l where 〈〉l denotes
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FIG. 4: (a) Comparison of the static target modes (open orange circles) with the target modes

obtained for balanced laser (solid orange circle) and optimized beam-energy balance (solid blue

squares). Comparison of the target shape reconstructed adding modes l=1, 2, and 3 for balanced

laser (b) and optimized beam-energy balance (c).

the average over the points for a given l) of C1 = −0.66 ± 0.05, C2 = −0.38 ± 0.04 and

C3 = −0.18 ± 0.04. The strong reduction of Cl with l shows that the lowest modes are the

most sensitive to the beam-energy balance. Errors in ∆rml of ±0.2%, ±0.25%, ±0.25% for

l = 1, 2, and 3 respectively and in Cl (reported above) at the 90th percentile were obtained

by comparing the points with their linear fits.

To explain the decrease of Cl with l, the relationship between the laser illumination modes

[ẽml where Ẽ(θ, φ) =
∑

∞

l=0

∑l

m=−l

√
4πẽml Y

m
l (θ, φ), Ẽ(θ, φ) is the total energy on target per

solid angle normalized to ẽ00 = 100%] and the beam energy balance modes was derived [42]

following the method described in [43]:

ẽml ≈ ale
m
l (1)

where al = 2π
∫ 1

−1
Ẽb(θ, φ)Pl (cos γ) d (cos γ) is the single-beam Legendre mode l, Ẽb(θ, φ) is

the single-beam energy on target per solid angle normalized to the averaged beam energy,

Pl are the Legendre polynomials, and γ is the angle between (θ, φ) and (θb, φb). For the

phase plates used in the experiment, a1 = 0.79, a2 = 0.47, and a3 = 0.2. Using Eq. (1),

an approximately constant coupling of the laser illumination modes to the target modes of

Cl/al = −0.85±0.07 was obtained showing that the decrease of Cl with l was caused by the

beam shapes.

The linear couplings indicate that the target modes are the addition of dynamic modes

that evolve linearly with the beam energy balance modes and about constant static modes

[rml = Cle
m
l + (rml )sta]. These static modes were evaluated in a second series of four shots.

The targets were 863±6-µm-diam., 26.5±0.5-µm-thick CH capsules containing 10 atm of D2.

They were irradiated by 100-ps-pickets (overlapped intensity ∼ 1.5×1014 W/cm2) to set the
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shell’s adiabat followed by a 2-ns-long drive pulse (intensity ∼ 4.3× 1014 W/cm2) that ac-

celerated the target with a total energy of 20.5±1 kJ. The laser focusing and smoothing was

kept the same. Two shots were performed with large modes and one using a balanced laser

(within ±0.9%). Figure 4(a) shows the static modes 〈(rml )sta〉shots = 〈rml − Cle
m
l 〉shots where

〈〉shots denotes the average over the three shots [44] with associated errors of ±(σm
l )sta/

√
3

where (σm
l )sta is the standard deviation of (rml )sta over the three shots. The largest static

modes were for l = 1 as they experienced the largest coupling. These static modes, cor-

responding to the target modes when the laser is balanced, are very close to the modes

measured for a balanced laser [Fig. 4(a)].

These results demonstrate that the target modes l = 1, 2, and 3 can be controlled up to

the end of the target acceleration by adjusting the beam-energy balance. On a fourth shot,

the target low-modes were reduced by applying (within ±1.5%) the optimized beam energy

balance (Eb)opt =
∑3

l=0

∑l

m=−l

√
4π(eml )optY

m
l (θb, φb) where (eml )opt = −〈(rsta)ml 〉shots /Cl to

compensate the static modes. Currently, the minimum target modes achievable on OMEGA

correspond to the static modes. Figures 4 show that the optimized balance resulted in a

further reduction of the target modes {
[

∑3

l=1

∑l

m=−l (r
m
l )

2
]0.5

} from 2.3% to 0.8%. Latter

in the implosion, the hot-spot pressure rapidly increases (resulting in a rapid start of its

x ray emission observed experimentally) and gets much larger than the ablation pressure

[45, 46]. Those nonuniformities are no longer amplified by the laser and act as a seed for

the nonuniformities at maximum compression [29].

In summary, the target modes l =1, 2, and 3 of directly driven imploding targets were

shown, using x-ray tomography, to vary linearly with the beam energy balance modes from

approximately constant static modes. This allowed reducing the target low modes from 2.3%

to 0.8%. These results are particularly important for direct-drive ICF where the control

of the symmetry requires challenging conditions on the laser properties (accurate beam

pointing, timing and on-target intensity balance). It shows that even if those conditions are

too challenging to diagnose with the current diagnostics on OMEGA, the target symmetry

can be controlled by adjusting the beam-energy balance.

This material is based upon work supported by the Department of Energy National
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