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We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where
the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electri-
cally controllable. The distinct relativistic quantum fingerprints associated with different electron spin states
are due to a physical mechanism analogous to chiroptical effect in the presence of degeneracy breaking. The
phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum
setting - henceforth the term “Dirac quantum chimera,” associated with which are physical phenomena with po-
tentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states
for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are
possible through, e.g., optical realizations of ballistic Dirac fermion systems.

The tremendous development of two-dimensional (2D)
Dirac materials such as graphene, silicene and germanene [1–
5], in which the low-energy excitations follow the relativistic
energy-momentum relation and obey the Dirac equation, has
led to the emergence of a new area of research: Dirac elec-
tron optics [6–33]. Theoretically, it was articulated early [7]
that Klein tunneling and the unique gapless conical disper-
sion relation can be exploited to turn a simply p-n junction
into a highly transparent focusing lens with a gate-controlled
negative refractive index, producing a Vaselago lens for the
chiral Dirac fermions in graphene. The negative refraction
of Dirac fermions obeys the Snell’s law in optics and the
angularly-resolved transmittances in analogy with the Fres-
nel coefficients in optics have been recently confirmed ex-
perimentally [20, 26]. Other works include various Klein-
tunneling junction based electronic counterparts of optical
phenomena such as Fabry-Pérot resonances [8, 13], cloak-
ing [11, 14], waveguide [12, 19], Goos-Hänchen effect [9],
Talbot effect [22], beam splitter and collimation [21, 28, 29],
and even Dirac fermion microscope [33]. A Dirac material
based electrostatic potential junction with a closed interface
can be effectively tuned to optical guiding and acts as an un-
usual optical dielectric cavity whose effective refractive index
can be electrically modulated, in which phenomena such as
gate controlled caustics [6], electron Mie scattering [15, 23–
25] and whispering gallery modes [17, 18, 30, 31] can arise. In
addition, unconventional electron optical elements have been
demonstrated such as valley resolved waveguides [34, 35] and
beam splitters [27], electronic birefringent superlens [16] and
spin (current) lens [10, 32]. Research on Dirac electron op-
tics offers the possibility to control Dirac electron flows in a
similar way as for light.

In this Letter, we address the role of chaos in Dirac elec-
tron optics. In nonrelativistic quantum mechanics, the inter-
play between chaos and quantum optics has been studied in
microcavity lasers [36–39] and deformed dielectric microcav-
ities with non-Hermitian physics and wave chaos [40]. With
the development of Dirac electron optics [6–33], the relativis-
tic electronic counterparts of deformed optical dielectric cav-

ities/resonators have become accessible. For massless Dirac
fermions in ballistic graphene, the interplay between classical
dynamics and electrostatic confinement has been studied [41–
44] with the finding that integrable dynamics lead to sharp
transport resonances due to the emergence of bound states
while chaos typically removes the resonances. In these works,
the uncharged degree of freedom such as electron spin, which
is fundamental to relativistic quantum systems, was ignored.

Our focus is on the interplay between ray-path defined clas-
sical dynamics and spin in Dirac electron optical systems. To
be concrete, we introduce an electrical gate potential defined
junction with a ring geometry, in analogy to a dielectric an-
nular cavity. Classically, this system generates integrable and
mixed dynamics with the chaotic fraction of the phase space
depending on the ring eccentricity and the effective refrac-
tive index configuration, where the index can be electrically
tuned to negative values to enable Klein tunneling. Inside the
gated region, the electron spin degeneracy is lifted through
an exchange field from induced ferromagnetism, leading to a
class of spin-resolved, electrically tunable quantum systems
of electron optics with massless Dirac fermions (by mimick-
ing the photon polarization resolved photonic cavities made
from synthesized chiral metamaterials). We develop an ana-
lytic wavefunction matching solution scheme and uncover a
striking quantum scattering phenomenon: manifestations of
classically integrable and chaotic dynamics coexist simulta-
neously in the system at the same parameter setting, which
mimics a chimera state in classical complex dynamical sys-
tems [45–52]. The basic underlying physics is the well-
defined, spin-resolved, gate-controllable refraction index that
dominantly controls the ballistic motion of short-wavelength
Dirac electrons across the junction interface, in which the
ray tracing of reflection and refraction associated with par-
ticles belonging to different spin states generates distinct clas-
sical dynamics inside the junction/scatterer. Especially, with a
proper gate potential, the spin-dependent refractive index pro-
file can be controlled to generate regular ray dynamics for one
spin state but generically irregular behavior with chaos for the
other. A number of highly unusual physical phenomena arise,
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such as enhanced spin polarization with chaos, simultaneous
quasiscarred and whispering gallery type of resonances, and
spin-selective lensing with a starkly near-field separation be-
tween the local density of states (DOS) for spin up and down
particles.

Low energy excitations in 2D Dirac materials are described
by the Dirac-Weyl Hamiltonian H0 = vFσ · p, where vF is
the Fermi velocity, p = (px, py) is the momentum measured
from a given Dirac point and σ = (σx,σy) are Pauli matrices
for sublattice pseudospin. In the presence of a gate potential
and an exchange field due to the locally induced ferromag-
netism inside the whole gated region, the effective Hamilto-
nian is H = vF s0 ⊗σ · p+ s0 ⊗ σ0Vgate(r)− sz ⊗ σ0M (r),
where the Pauli matrix sz acts on the real electron spin space,
s0 and σ0 both are identity matrices, Vgate(r) and M (r) are
the electrostatic and exchange potential, respectively. Due
to the pseudospin-momentum locking (i.e., σ · p), a non-
uniform potential couples the two pseudospinor components,
but the electron spin components are not coupled with each
other. The exchange field breaks the twofold spin degeneracy.
Since [sz⊗σ0,H] = 0, the Hamiltonian can be simplified as
Hs =H0+Vgate(r)−sM (r) with s=± denoting the electron
spin quantum number. Because of M , the Dirac-type Hamil-
tonian Hs can give rise to spin dependent physical processes.

For the ring configuration in Fig. 1(a) and assuming the
potentials are smooth on the scale of the lattice spacing
but sharp in comparison with the conducting carriers’ wave-
length, in the polar coordinates r= (r,θ), we have Vgate(r) =
h̄vF ν1Θ(R1− r)Θ(|r−ξ|−R2)+ h̄vF ν2Θ(R2−|r−ξ|), and
M (r) = h̄vF µΘ(R1− r), where Θ is the Heaviside step func-
tion, R2 is the radius of the small disk gated region of strength
h̄vF(ν2− ν1) placed inside a larger disk of radius R1 (> R2)
and strength h̄vF ν1, the displacement vector between the disk
centers is ξ = (ξ,0), and the exchange potential has the
strength h̄vF µ over the whole gated region. The two circu-
lar boundaries divide the domain into three distinct regions: I:
r > R1; II: r < R1 and |r− ξ| > R2; III; |r− ξ| < R2. For
given particle energy E = h̄vF ε, the momenta in the respective
regions are kI

s = |ε|, kII
s = |ε−ν1+sµ|, and kIII

s = |ε−ν2+sµ|.
Within the gated region, the exchange potential splits the
Dirac cone into two in the vertical direction in the energy do-
main while the electrostatic potential simply shifts the cone,
leading to a spin-resolved, gate-controllable annular junction
for massless Dirac electrons.

In the short wavelength limit, locally the curved junction
interface appears straight for the electrons, so the gated re-
gions and the surroundings can be treated as optical media.
The unusual feature here is that the refractive indices are spin-
dependent: nII,III

s = (ε+ sµ−ν1,2)/ε, similar to light entering
and through a polarization resolved photonic crystal [53, 54].
Given the values of ε and µ, depending on the values of ν1,2,
the refractive indices for the two spin states can be quite dis-
tinct with opposite signs. The system is thus analogous to a
chiral photonic metamaterial based cavity, which represents a
novel class of Dirac electron optics systems.

The classical behaviors of Dirac-like particles in the short

FIG. 1. Scattering system and classical ray dynamics. (a) Annu-
lar shaped scattering region with eccentricity ξ = OO′, (b) a cross-
sectional view, (c,d) chaotic and integrable ray dynamics on the
Poincaré surface of section defined by the Birkhoff coordinates (θ,
sinβ) for spin up and down particles, respectively, where θ denotes
the polar angle of a ray’s intersection point with the cavity boundary
and β is the angle of incidence with respect to the boundary normal.
The quantity sinβ is proportional to the angular momentum and the
critical lines for total internal reflection are given by sinβc =±1/ns.

wavelength limit can be assessed using the optical analogy, as
done previously for circularly curved p− n junctions [6, 33],
where the classical trajectories are defined via the principle
of least time. Because of the spin dependent and piecewise
constant nature of the index profile, the resulting stationary
ray paths for the Dirac electrons are spin-resolved and con-
sist of straight line segments. At a junction interface, there
is ray splitting governed by the spin-resolved Snell’s law. On
a Poincaré surface of section, the classical dynamics are de-
scribed by a spin-resolved map Fs relating the dynamical vari-
ables θ and β (Fig. 1) between two successive collisions with
the interface: (θi,sinβi) 7→ (θi+1,sinβi+1). The ray-splitting
picture is adequate for uncovering the relativistic quantum fin-
gerprints of distinct classical dynamics.

Spin-resolved ray trajectories inside the junction lead to the
simultaneous coexistence of distinct classical dynamics. For
example, for the parameter setting ν2 = −ν1 = ε = µ, i.e.,
nII

s = 2 + s and nIII
s = s, for spin up particles (s = +), the

junction is an eccentric annular electron cavity characterized
by the refractive indices nII

+ = 3 and nIII
+ = 1, as exemplified

in Fig. 1(b) for ξ = 0.3. However, for spin down particles
(s = −), the junction appears as an off-centered negatively
refracted circular cavity with nII

− = 1 and nIII
− = −1. Fig-

ures 1(c) and 1(d) show the corresponding ray dynamics on
the Poincaré surface of section for spin up and down parti-
cles, respectively, where the former exhibit chaos while the
dynamics associated with the latter are integrable with angu-
lar momentum being the second constant of motion.

For a spin unpolarized incident beam, the simultaneous oc-
currence of integrable and chaotic classical dynamics means
the coexistence of distinct quantum manifestations, leading
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to the emergence of a Dirac quantum chimera. To establish
this, we carry out a detailed analysis of the scattering matrices
for spin-dependent, relativistic quantum scattering and trans-
port through the junction. Using insights from analyzing op-
tical dielectric cavities [55, 56] and nonrelativistic quantum
billiard systems [57, 58], we develop an analytic wave func-
tion matching scheme at the junction interfaces (See Supple-
mental Material [59] which includes Refs. [24, 30, 60–64]) to
solve the Dirac-Weyl equation to obtain the scattering matrix
S as a function of the energy E as well as the spin polariza-
tion s for given system parameters R2/R1, ξ, ν1,2 and µ. The
Wigner-Smith time delay [60, 61] is defined from the S-matrix
as τ = −ih̄Tr

[
S†(∂S/∂E)

]
, which is proportional to the DOS

of the cavity. Large positive values of τ signify resonances as-
sociated with the quasibound states [65]. Physically, a sharper
resonance corresponds to a longer trapping lifetime and scat-
tering time delay. Previous works on wave or quantum chaotic
scattering [66–85] established that classical chaos can smooth
out (broaden) the sharp resonances and reduce the time delay
markedly while integrable dynamics can lead to stable, long-
lived bound states (or trapping modes).

FIG. 2. A Dirac quantum chimera. (a) top: Contour map of dimen-
sionless Wigner-Smith time delay (on a logarithmic scale) versus en-
ergy E and eccentricity ξ for spin down (left) and up (right) cases,
where the bright yellow color indicates larger values. Middle and
bottom panels: time delay and total cross section averaged over all
directions of the incident waves versus E, respectively, for ξ = 0.3.
(b) Dependence of the maximum time delay on ξ (red: spin up; blue:
spin-down). (c) Energy averaged spin polarization versus ξ.

We present concrete evidence for Dirac quantum chimera.
Figure 2(a) shows, for R2/R1 = 0.6, µ=−ν1 = 5 and ν2 = 45,
the dimensionless time delay (on a logarithmic scale) versus
the eccentricity ξ and energy E (in units of h̄vF/R1). Fig-
ure 2(b) shows the maximum time delay [within the given en-
ergy range in Fig. 2(a)] versus ξ for spin-up (red) and spin-
down (blue) particles. There are drastic changes in the time
delay as the energy is varied, which are characteristic of well-
isolated, narrow resonances and imply the existence of rela-
tively long-lived confined modes. There is a key difference in
the resonances associated with the spin up and down states:
the former depend on the eccentricity parameter ξ and are
greatly suppressed for ξ > 0.2, while the latter are indepen-

dent of ξ. For example, the middle panel of Fig. 2(a) shows
that, for a severely deformed structure (ξ = 0.3), there are
sharp resonances with high peak values of the time delay for
the spin down state, but none for the spin up state. The sup-
pression of resonances associated with the spin up state is con-
sistent with the behavior of the total cross section σt (averaged
over the directions of the incident wave) given in terms of
the S-matrix elements by σt = (2k)−1

∑
∞
m,l=−∞

|Sml−δml |2, as
shown in the bottom panel of Fig. 2(a). Because the classical
dynamics for massless fermions in the spin up and down states
are chaotic and integrable, respectively [c.f., Figs. 1(c,d)],
there is simultaneous occurrence of two characteristically dif-
ferent quantum scattering behaviors for a spin unpolarized
beam: one without and another with sharp resonances. This
striking contrast signifies a Dirac quantum chimera.

Are there unexpected, counterintuitive physical phenomena
associated with a Dirac quantum chimera? Yes, there are!
Here we present two and point out their applied values.

FIG. 3. Spin polarized scarred and regular whispering-gallery-
mode resonances as a result of Dirac quantum chimera. (a,c)
Real space probability densities (on a logarithmic scale) of the rep-
resentative quasibound states for spin-up and spin-down Dirac elec-
trons, respectively. For the spin-up particles, the spinor wave solution
is scarred by an unstable periodic ray trajectory obeying the Snell’s
law, as indicated by the red dashed path with highlighted pentagram
markers. The spin-down Dirac electrons are associated with a whis-
pering gallery ray path due to the continuous total internal reflections
denoted by the blue dotted segments. (b,d) The corresponding phase-
space representations with regions below the critical black dash lines
satisfying the total internal reflection at the boundary. The distinct
quasibound modes are from simultaneous resonances under the same
system parameters, leading to a relativistic quantum chimera. Fur-
ther signatures of the chimera state can be seen in the plot of the total
cross section versus the particle energy for different spin states (e)
and a net spin distribution with a dramatic spin-resolved separation
in the real space confined inside the cavity (f).

The first is spin polarization enhancement, which has po-
tential applications to Dirac material based spintronics. A
general way to define spin polarization is through the spin
conductivities G↓(↑) as Pz = (G↓−G↑)/(G↓+G↑). Imagine
a system consisting of a set of sparse, randomly distributed,
identical junction-type of annular scatterers, and assume that
the scatterer concentration is sufficiently low (nc� 1/R2

1) so
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that multiple scattering events can be neglected. In this case,
the spin conductivities can be related to the transport cross
section as G↓(↑)/G0 = k/(ncσ

↓(↑)
tr ), where G0 is the conduc-

tance quantum and σ
↓(↑)
tr can be calculated from the S-matrix.

For a spin unpolarized incident beam along the x-axis with
equal spin up and down populations, we calculate the aver-
age spin polarization over a reasonable Fermi energy range as
a function of the eccentricity ξ, as shown in Fig. 2(c). For
ξ > 0.2 so classical chaos is relatively well developed and a
Dirac quantum chimera emerges, there is robust enhancement
of spin polarization. From the standpoint of classical dynam-
ics, the scattering angle is much more widely distributed for
spin up particles (due to chaos) as compared with the angle
distribution for spin down particles with integrable dynamics,
leading to a larger effective resistance for spin up particles.
From an applied perspective, the enhancement of spin polar-
ization brought about by a Dirac quantum chimera can be ex-
ploited for developing spin rheostats or filters, where one of
the spin resistances, e.g., R↑ ∝ 1/G↑, can be effectively mod-
ulated through tuning the deformation parameter ξ so as to
induce classically chaotic motion for one type of polarization
but integrable dynamics for another.

FIG. 4. Spin-selective caustic lens and skew scattering associated
with a Dirac quantum chimera. (a) Caustic patterns resulting from
the scattering of a spin unpolarized planar incident wave traveling
along the positive x-axis (θ′ = 0) with relatively short wavelength,
i.e., kR1 = 70� 1, and (c) from scattering of the wave propagating
along the direction that makes an angle θ′ = π/4 with the x axis.
(b,d) The corresponding spatially resolved near field net spin distri-
butions measured by the difference |ψ↑|2− |ψ↓|2, respectively. (e)
The resulting far-field behavior characterized by the angular distri-
butions of spin-dependent differential cross sections with symmetric
profiles for θ′ = 0 (left inset) and spin-selective asymmetric one for
θ′ = π/4 (right inset), where both insets are plotted by the eighth root
of σ

↑(↓)
di f f in order to weaken the drastic contrast variation in magni-

tude for better visualization. Parameters are ξ = 0.27, R2/R1 = 0.6,
ν2 = µ =−ν1 = 70 and E = 70.

The second phenomenon is resonance and lensing associ-
ated with a Dirac quantum chimera. Figures 3(a-f) show, for

ξ = 0.27 (in units of R1), R2/R1 = 0.6, ν2 = 4ν1 = −4µ =
24.16 (in units of 1/R1) and E = 6.04 (in units of h̄vF/R1), a
resonant (quasibound) state, in which the spatially separated,
spin resolved local DOS is confined inside the cavity. The
spin up state is concentrated about a particular unstable pe-
riodic orbit without the rotational symmetry [Figs. 3(a) and
3(b)] and exhibits a scarring pattern with a relatively short
lifetime characterized by a wider resonance profile, as shown
in Fig. 3(e). Spin down particles are trapped inside the inner
disk by a regular long-lived whispering gallery mode associ-
ated with the integrable dynamics [Figs. 3(c) and 3(d)]. The
Dirac quantum chimera thus manifests itself as the simulta-
neous occurrence of a magnetic scarred quasibound state and
a whispering gallery mode excited by an incident wave with
equal populations of spin up and down particles, as shown in
Fig. 3(f), a color-coded spatial distribution of the difference
between the local DOS for spin up and down particles.

In the sufficiently short wavelength regime where the ray
picture becomes accurate, a spin resolved lensing behavior
arises, due to the simultaneous occurrence of two distinct
quantum states associated with the chimera state. The cavity
can be regarded as an effective electronic Veselago lens with
a robust caustic function for spin down particles but the spin
up particles encounter simply a conventional lens of an irregu-
lar shape. Particularly, for a spin-unpolarized, planar incident
wave, a spin-selective caustic behavior arises, as shown in
Figs. 4(a-d) through the color-coded near-field patterns. There
is a pronounced lensing caustic of the cusp type for the spin
down state while a qualitatively distinct lensing pattern oc-
curs for the spin up state. A consistent far-field angular distri-
bution of the differential cross section is shown in Fig. 4(e),
which gives rise to well-oriented/collimated, spin-dependent
far-field scattering with the angle resolved profile shrinked
into a small range due to the lensing effect. Despite lack of
robust lensing, the spin up particles in general undergo asym-
metric scattering, which can lead to spin-polarized transverse
transport in addition to longitudinal spin filtering.

To summarize, we uncover a Dirac quantum chimera - a
type of relativistic quantum scattering states characterized by
the simultaneous coexistence of two distinct types of behav-
iors as the manifestations of classical chaotic and integrable
dynamics, respectively. The physical origin of the chimera
state is the optical-like behavior of massless Dirac fermions
with both spin and pseudospin degrees of freedom, which to-
gether define a spin-resolved Snell’s law governing the chi-
ral particles’ ballistic motion. The phenomenon is predicted
analytically based on quantum scattering from a gate-defined
annular junction structure. The chimera has striking physical
consequences such as spin polarization enhancement, unusual
quantum resonances, and spin-selective lensing, which are po-
tentially exploitable for developing 2D Dirac material based
electronic and spintronic devices.
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[36] J. U. Nöckel, A. D. Stone, G. Chen, H. L. Grossman, and R. K.
Chang, Opt. Lett. 21, 1609 (1996).
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