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We consider a regular assembly of singly-occupied cells with two accessible volumes. Coupled to
cell volumes are interaction energies between nearest neighbors that lead to a phase transition with
a critical point. We find that these compressible cell models can serve as Ising-like prototypes
of the one-component liquid-liquid and isostructural solid-solid phase transitions that originate in
the short-range features of the intermolecular potential. The mean-field solutions provide hints
concerning the analytical form of the equation of state of liquid water.

The gas-liquid phase transition of pure substances is
caused by the attractive, long-ranged section of the in-
termolecular potential. The details of this potential at
shorter distances can lead to phase transitions between
condensed phases with distinct densities. Stell and Hem-
mer first predicted [1] that a pair potential with a “core-
softened” repulsive part can induce a second phase tran-
sition in addition to the usual gas-liquid transition. They
also found that this sort of intermolecular potential un-
derlies isostructural solid-solid transitions such as those
experimentally observed in cerium [2]. Simulations for
the “step” potential soon confirmed the Stell-Hemmer
predictions [3]. Also, isostructural solid-solid transitions
for hard-core square-well potentials with an extremely
short-ranged attractive region have been reported [4].

Basically the same phenomenon, that is, the coexis-
tence of two condensed phases with distinct densities for
a one-component system, has been found in liquids inter-
acting via a variety of core-softened pair potentials [5, 6]
as well as for a number of water force fields used in sim-
ulations [7, 8], most of which support the hypothesis of
a liquid-liquid critical point [9] which is also supported
by a variety of experiments (see Ref. 10 and references
therein). As shown by Stell and Hemmer for isostruc-
tural solid-solid transitions, the existence of two length
scales characterizing the short-range section of the inter-
molecular potential is essential for the occurrence of a
liquid-liquid phase transition for a one-component sys-
tem [11].

In recent years critical behavior in liquid-liquid tran-
sitions has been studied assuming that such transitions
belong to the universality class of the three-dimensional
Ising model [12, 13]. In support, a finite-size scaling
analysis of the liquid-liquid phase transition of the Jagla
“ramp” potential [5] reveals Ising-like behavior [14].

Also recently a “two-structure” molecular thermody-
namic approach has been proposed to describe experi-
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mental data on supercooled water [15] and also simula-
tion results for a number of water force fields [16, 17],
thereby extending mean-field-level work on the equation
of state [18, 19].

Here we ask if we can devise Ising-like models to de-
scribe this phenomenology. The compressible cell (CC)
models presented here indicate that we can, and we will
show that are consistent with the accumulated findings
on one-component liquid-liquid and isostructural solid-
solid phase transitions. Mean-field solutions yield an an-
alytical equation of state relevant to understanding the
unusual thermodynamics of liquid water at low temper-
atures. We shall also see that these Ising-like CC models
allow an “exact” treatment of criticality.

Model description and nature.— Using the concept re-
cently introduced by Fisher et al. [20, 21] of “fluctuat-
ing cell volumes” in lattice models, we examine a three-
dimensional regular assembly with N sites and a coor-
dination number c. Associated with each site is a “cell”
inside of which is a moving particle. Akin to the Ising
model, in which spins point either up or down, and the
standard lattice gas (SLG) model [22], in which cells of
a fixed volume are either vacant or contain one parti-
cle, each cell has two accessible volumes, v− = v0 and
v+ = v0 + δv, with δv > 0. Although there are primi-
tive versions of this with vanishing attractive forces be-
tween particles, we focus on more general models in which
ε−− = ε+− = ε0 and ε++ = ε0 − δε, where the sign and
magnitude of ε0 are unrestricted and δε > 0.

A particle moves in a free volume in its cell. When this
volume is sufficiently small the system is in a condensed
state. Hence we have two characteristic free volumes,
0 < v̇+ < v+ and 0 < v̇− < v−, and the ratio λ = v̇+/v̇−
quantifies the local entropic effects being thus an essential
parameter. Note that such geometrical features as cell
volume and shape and particle size and shape strongly
affect the free volumes [21]. Figure 1 shows two examples
in which cell volumes and free volumes are coupled in
distinct ways, illustrating that their values can be chosen
independently.

We assign ni = 1 and ni = 0 to cell i when it is in the
(+) and (−) states, respectively. Thus for the configu-
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FIG. 1: (Color online) Single-cell (+) and (−) states for two situations, (a) and (b). Pictures are two-dimensional for a sake
of simplicity and the shaded (blue) areas are the free volumes a particle can explore in its cell. The relative proportions of
particle sizes, volumes, and free volumes are schematic. In (a) we choose—because we have the freedom to do so—to consider
that the free volume of particles in (+) cells is restricted so that λ < 1. In (b) two particle sizes are used while λ > 1.

ration {ni; i = 1, ..., N} the system energy and volume
are

E{ni} = c
2Nε0 − δε

∑
<ij>

ninj (1)

and

V {ni} = Nv0 + δv

N∑
i=1

ni. (2)

We define β̄ ≡ 1/kBT and p̄ ≡ β̄p, with T the tem-
perature, p the pressure, and kB the Boltzmann con-
stant, and examine the isothermal-isobaric ensemble,
summing the e−β̄E and e−p̄V Boltzmann factors over mi-
crostates. The resulting partition function Y (N, p, T ) has
the mathematical structure of the Ising canonical par-
tition function. Thus, when using µ = −kBT lnY as
the chemical potential and the standard Ising variables
f̄ ≡ −F/NkBT , K ≡ J/kBT , and h ≡ H/kBT (with
F , J , and H as the free energy, coupling constant, and
magnetic field, respectively), we find the mapping [23]

f̄ = p̄(v0 + 1
2δv)− 1

2 lnλ− µ̄+ c
2 β̄(ε0 − 1

4δε), (3)

K = 1
4 β̄δε, h = − 1

2 p̄δv + 1
2 lnλ+ c

4 β̄δε, (4)

where µ̄ ≡ µ/kBT − ln[Λ3
T /v̇−], with ΛT ≡ ~

√
2π/mkBT

the de Broglie thermal wavelength for particles of mass
m.

We will later use known solutions of the Ising model
to exploit Eqs. (3) and (4) and analyze mean-field-
approximation solutions, but first we finish our descrip-
tion of our models.

Note that CC models differ fundamentally from lattice
gases. In lattice gases the coupling between cell occu-
pancy and interaction energy is essential. In CC models
the analogous mechanism is local energy-volume coupling.

On the other hand, when measured in terms of lattice
spacings, distances are discrete in lattice models, imply-
ing that associated with the two accessible volumes for
a cell in CC models there are two lattice spacings. In
the Ising paradigm, this appears as the two length scales
underlying the phase transitions. In addition, the larger
lattice spacings characteristic of (+) states make (++) in-
teractions longer range. Because these interactions lower
the energy by δε from the arbitrary value ε0, this is the
essential feature of a pair potential with a softened core
[24, 25].

Mean-field solutions and the Widom line.— The mean-
field pvT equation of state, in which v is the volume per
particle, is [23]

p = Tg(v) + c
δε

δv

v − v0

δv
, (5)

with

g(v) =
kB
δv

ln

(
λ
v0 + δv − v
v − v0

)
. (6)

This has the mathematical structure of the mean-field
standard lattice gas (SLG) equation of state, which is
not surprising because both the CC and SLG models are
equivalent to the Ising model. The coordinates of the
(mean-field) critical point are

vc = v0 + 1
2δv, Tc = 1

4c
δε

kB
, pc = 1

4c(2 + lnλ)
δε

δv
. (7)

Figure 2 shows how the phase transition builds up in
the p − v plane. Thus the Tg(v) contribution indicates
that system compressibility approaches zero at the edges
of the v range (from v− = v0 to v+ = v0+δv). Combining
this with thermodynamic convexity, i.e., (∂p/∂v)T < 0,
yields negative Tg(v) values for large v. When the pos-
itive contribution from interactions between particles in
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FIG. 2: (Color online) Isotherms in the pressure-volume
plane calculated from Eqs. (5) and (6) for the model in
Fig. 1(a) with parameters c = 6, δε = 1000 J mol−1,
v0 = 2 · 10−5 m3 mol−1, δv = 0.5 · 10−5 m3 mol−1, and
λ = 0.2. According to Eq. (7), these parameters yield
Tc = 184.4 K and pc = 1.17 kbar. The straight line is the
cδε(v − v0)/δv2 contribution while the dashed lines are the
Tg(v) contributions for T = 150 K (bold dashed line, red)
and T = 200 K (thin dashed line, blue), with the two re-
maining solid curves representing, according to Eq. (5), the
resulting p(v) values, hence the bold (red) line corresponds to
T = 150 K and the thin (blue) line to T = 200 K. The inset
shows that the coexistence curve in the pressure-temperature
plane has a negative slope and ends at a critical point.

nearest-neighbor (+) cells is added, a van der Waals loop
appears at temperatures below the critical temperature
Tc.

The mean-field equation of state enables a quantitative
study of the Widom line, which has received considerable
attention in connection with one-component liquid-liquid
phase transitions [13, 26, 27]. This line is an extension of
the coexistence curve in the p−T plane to the one-phase
region (i.e., T > Tc) at which thermodynamic response
functions (e.g., heat capacity) exhibit extrema when eval-
uated along a given path (e.g., isobaric). Asymptotically
close to the critical point all such extrema converge into a
single line. In practice, however, the behavior of response
functions upon “crossing the Widom line” is explored at
a greater distance from Tc. We ask how CC models be-
have when the Widom line is crossed?

To address this question we use Eqs. (5) and (6) to
measure the isobaric heat capacity Cp, the isothermal
(κT ) and isentropic (κS) compressibilities, and the iso-
baric thermal expansivity αp of the model described in
Fig. 1(a). This model builds up a geometrical selectiv-
ity in which the free volume in (+) cells is constrained,
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FIG. 3: (Color online) Temperature dependence of the iso-
baric heat capacity Cp (in J K−1 mol−1), the isobaric thermal
expansivity αp (in 10−3 K−1) and, (c) the isothermal (κT )
and isentropic (κS) compressibilities (in 10−12 Pa−1) for the
water-like model in Fig. 1(a), with the model parameters
and critical coordinates specified in the caption of Fig. 2, at
−500 bar (bold solid line, red), 1 bar (thin solid line), and
500 bar (thin dashed line, blue). Data for compressibilities
correspond to 1 bar, with the literature experimental data in
the lower right panel obtained from Refs. 10 and 30.

i.e., λ < 1, so that (++) configurations are open, low-
density structures with small local entropy and small en-
ergy. This mimics the structural scheme characteristic
of supercooled water [28]. We choose the values of the
model parameters by matching the critical coordinates
to those at which

the liquid-liquid critical point of real water has been
hypothesized to exist (Tc ∼ 200 K and pc a few hundred
bars) [12].

Note that according to the Clapeyron equation the
slope of the coexistence curve in the p−T plane dpσ/dT
is negative in this water-like model since the phase with
a higher volume—i.e., the phase with a higher propor-
tion of (+) cells—has a lower entropy because λ < 1 (see
also the inset in Fig. 2). This negative dpσ/dT is con-
sistent with what has been found for water force fields
[29]. Thus, because it is a continuation of the coexis-
tence curve, the Widom line also has a negative slope.
Figure 3 illustrates that this is the case: isobaric Cp(T )
and αp(T ) plots reveal that extrema move toward lower
T as p increases.

The lower panels in Fig. 3 compare, at constant p, the
model predictions with experimental values of κT and
κS . We used literature values of κT for T down to 239 K
[30], while we calculated κS from data of κT , αp, and Cp
by using the exact thermodynamic relation κS = κT −
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Tvα2
p/Cp. Interestingly, additional κT experimental data

down to even lower temperatures reported recently [10]
reveal a κT (T ) maximum around 228 K. On the other
hand, the shape of the κS(T ) experimental curve strongly
suggests that this property should exhibit a maximum at
about 238 K. In this context, it is to be remarked, as
clearly perceptible from Fig. 3, that the model likewise
predicts that the temperature of the κS(T )

maximum is greater than that of the κT (T ) maximum.
Hence [23] our water-like CC model reproduces

with significant detail the experimentally-observed low-
temperature anomalies of the response functions

of supercooled water [31, 32]. Because such a model ex-
hibits a phase transition with a critical point, it supports
the experimental observation that the behavior of super-
cooled water is consistent with that of a liquid with crit-
ical coordinates around 200 K and a few hundred bars.
Indeed, the existence of a second, liquid-liquid critical
point in water has been hypothesized [7], but experimen-
tal constraints make its direct observation difficult [28].
In any event, Fig. 3 shows that our CC model offers the
possibility of studying this criticality.

Before discussing critical behavior we note that Fig. 2
reveals, in accord with observations [33], that the model
contemplates the existence of states with a negative pres-
sure which is large in magnitude. We thus find fur-
ther support to the conclusion that, even at a mean-
field level, a model with the microscopic attributes of
low-temperature water exhibits a macroscopic behavior
consistent with experimental results. Therefore, we con-
clude that Eqs. (5) and (6) may allow us to develop a
physically-based equation of state for liquid water.

Criticality.— Equations (3) and (4) show that the Ising
“thermal” field K is strongly connected to the tempera-
ture, that the “ordering field” h is affected by contribu-
tions from both the pressure and the temperature, and
that the chemical potential only enters (or “mixes in”)
the free energy. Thus [23] µ(p, T ) is a reasonable choice
of the thermodynamic potential in CC models [34]. This
mirrors the situation found in the SLG, which leads to
p(µ, T ). Note also that the scheme in Eqs. (3) and (4)
is consistent with that proposed phenomenologically for
one-component liquid-liquid criticality [12, 13]. The only
difference is the lack of “pressure mixing” in K, but this
pressure mixing occurs in decorated models with vacant
bond cells of variable volume [23].

Focusing on phase boundaries, we set h = 0 in (4) and
find [23]

pσ = pc + (kBTc lnλ/4δv)t+O(t2) and (8)

µσ = µc + (vckBTc lnλ/4δv − sc)t+O(|t|2−α), (9)

where α ' 0.109, sc is the critical entropy per particle,
and t ≡ (T − Tc)/Tc. Note that the pressure remains
analytical at the critical point and that the second tem-
perature derivative of the chemical potential diverges as

|t|−α. The opposite is true for the SLG, for which only p
is nonanalytical [21]. This has implications for the shape
of the coexistence curve, which displays full symmetry in
the v − T plane. In particular [23], the specific volumes
of the coexisting phases are given by

v± = vc[1±B|t|β +O(|t|)], (10)

with B > 0 and β ' 0.326. For the number density
ρ = v−1 we find

ρ± = ρc[1∓B|t|β +B2|t|2β +O(|t|3β)]. (11)

Hence the coexistence curve diameter in the density-
temperature plane, ρd ≡ (ρ+ + ρ−)/2, curves as the
critical point is approached, showing a |t|2β singularity
which is absent for vd ≡ (v+ + v−)/2. The coexistence
curve of CC models is, indeed, symmetric in the volume-
temperature plane, and this symmetry property is related
to the analyticity of the pressure, as is the symmetry of
the SLG coexistence curve in the ρ− T plane related to
the analyticity of the chemical potential [21].

Using Eq. (8) we find that the value of the slope of the
coexistence curve in the p − T plane evaluated at criti-
cality, (dpσ/dT )c, is positive when cell volumes and free
volumes are correlated, i.e., when λ > 1, but that anti-
correlation (λ < 1) yields a negative slope. In addition,
(dpσ/dT )c = 0 for constant free volumes, i.e., λ = 1.

The water-like model in Fig. 1(a) is, as noted above,
characterized by a negative value of dpσ/dT . Figure 1(b),
in contrast, shows a connection with the isostructural
solid-solid phase transitions supported by experiments,
simulations, and theoretical analyses [1–3]. For cerium
this kind of transition has been attributed to the ultra-
high-pressure promotion of 4f electrons to the conduction
band (5d) which decreases the effective ionic radius and
increases the energy [1, 2]. Because (dpσ/dT )c > 0 [3], a
CC version with λ > 1 is needed. Thus we expect that
larger ions explore a larger free volume.

In the borderline case (dpσ/dT )c = 0 Jagla model sim-
ulations reveal that significant anomalies are present only
for κT [13, 27]. The performance of the model along the
critical isobar is consistent with these results [23].

Final remarks.— We cannot use δε, δv > 0 to describe
the isostructural solid-solid transitions in systems com-
posed of particles interacting via hard-core square-well
pair potentials with an extremely short-ranged attrac-
tive section [4]. Thus we might use a modified CC model
with −v0 < δv < 0 to approach this problem. On the
other hand, we cannot use CC models to probe the re-
cently discovered one-component liquid-liquid transitions
caused by “network interpenetration” in systems with
highly directional interactions [35].

But because much of our understanding of the gas-
liquid phase transition is based on the standard lattice
gas, the evidence provided here confirms that our com-
pressible cell models can serve as basic prototypes for the
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one-component liquid-liquid and isostructural solid-solid
phase transitions we have examined in this work.
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