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The Josephson effect is a prominent phenomenon of quantum supercurrents that has been widely
studied in superconductors and superfluids. Typical Josephson junctions consist of two real-
space superconductors (superfluids) coupled through a weak tunneling barrier. Here we propose
a momentum-space Josephson junction in a spin-orbit coupled Bose-Einstein condensate, where
states with two different momenta are coupled through Raman-assisted tunneling. We show that
Josephson currents can be induced not only by applying the equivalent of “voltages”, but also by
tuning tunneling phases. Such tunneling-phase-driven Josephson junctions in momentum space are
characterized through both full mean field analysis and a concise two-level model, demonstrating
the important role of interactions between atoms. Our scheme provides a platform for experimen-
tally realizing momentum-space Josephson junctions and exploring their applications in quantum-
mechanical circuits.

Introduction. The Josephson effect [1, 2] is an intrigu-
ing quantum phenomenon of supercurrents across a de-
vice known as a Josephson junction (JJ). A typical JJ
consists of two macroscopic quantum systems [e.g., su-
perconductors, superfluids, or Bose-Einstein condensates
(BECs)] that are separated in real or spin space and
weakly coupled by quantum tunneling through a thin
barrier [Fig. 1(a)] or by Rabi coupling between different
spins. Because of quantum tunneling of particles across
the junction, JJs have found important applications in
quantum-mechanical circuits, such as SQUIDs [3, 4], su-
perconducting qubits [5–8], and precision measurements
[3]. In experiments, JJs have been widely realized in solid
state superconductors [9, 10], superfluid Helium [11–14],
and recently, in ultra-cold atomic gases [15–26], where os-
cillating supercurrents were generated by applying a volt-
age drop (or its equivalent) across JJs while maintaining
a constant weak coupling (i.e., a.c. Josephson effect [27]).

While JJs have been well studied in real space, a natu-
ral and important question is whether Josephson effects
can also be observed in momentum space. In this pa-
per, we address this question and propose a scheme for
realizing momentum-space JJs (MSJJs). In analogy to
bosonic JJs in a real-space double well [22, 23], a MSJJ
may be realized with a momentum-space double-well dis-
persion [see Fig. 1(a)], which is an essential property of
spin-orbit coupled systems [28, 29]. Spin-orbit coupling
(SOC) is ubiquitous in solid state materials and has re-
cently been realized experimentally in ultracold atomic
gases [29–41]. In the presence of SOC, condensates at
distinct band minima can be considered as two distinct
independent quantum systems. However, unlike quan-
tum tunneling between two wells in real space, two BECs
at distinct momenta are not directly coupled.

Here we propose a MSJJ facilitated by a tunable inter-
well coupling in an spin-orbit coupled BEC [42, 43],
where the coupling is generated by an additional pair of
counter-propagating Raman lasers. Such Raman-assisted

FIG. 1: (a) Illustration of conventional JJ for real-space su-
perconductors (top) versus MSJJ (bottom), where the double
well band dispersion is generated using a spin-orbit coupled
BEC. (b,c) Experimental setup for realizing a MSJJ. Two
pairs of Raman lasers realize SOC (blue) and weak coupling
(red) between two band minima, respectively.

tunneling between two momentum states changes both
the atomic spin and momentum, and thus couples the
condensates at the two band minima. The SOC cou-
pling strength dictates the height of the insulating bar-
rier while the Raman detuning serves as an effective volt-
age between the two band minima. Suddenly changing
the detuning (i.e., applying a voltage) induces a coher-
ent oscillation of the BECs between the two band min-
ima (i.e., supercurrent oscillations), similar to traditional
a.c. Josephson effects in superconductors. More interest-
ingly, the phase of the Raman-assisted tunneling between
BECs at the two band minima is highly tunable [44], in
contrast to real tunneling coefficients for real-space JJs
in superconductors [9, 10] and double-well BECs [22, 23].
We show that a sudden change of the tunneling phase
(while keeping the effective voltage unchanged) can also
induce Josephson effects of supercurrents, a phenomenon
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that we name as “tunneling-phase-driven JJ”. We fo-
cus on this new type of Josephson effect and study its
properties through both full mean-field simulation with
the Gross-Pitaevskii equation (GPE) [15, 45] and the de-
velopment of an effective two-level model. Our results
present rich physics in this system with different types of
supercurrent oscillations (Josephson, plasmonic [17], self-
trapping [17, 22], etc.) and display the important role of
many-body interactions between atoms. Due to their sta-
bility and high controllability, the proposed MSJJs and
tunneling-phase-driven JJs may have potential applica-
tions for building novel quantum mechanical circuits.

Experimental setup and theoretical modeling . We con-
sider a BEC confined in an elongated trap. Two internal
states |↑〉 and |↓〉 are coupled by two counter-propagating
Raman lasers with Rabi frequencies Ωa and Ωb, form-
ing an effective one-dimensional (1D) SOC dispersion
relation along the x direction [see Fig. 1(b, c)]. Here-
after we choose recoil momentum ~kR and recoil energy
ER = ~2k2

R/2m for the Raman lasers as the units of mo-
mentum and energy. Consequently, we have length and
time in units of 2π/kR and ~/ER. The 1D SOC dis-
plays a double-well band dispersion in momentum space

with two band minima located at ±kL = ±
√

1− (Ω/4)
2
,

where Ω is the Raman coupling strength [46]. The
tunneling between BECs at ±kL requires simultaneous
change of spin and momentum, which can be realized us-
ing another independent pair of Raman lasers Ωa′ and
Ωb′ incident at an angle θL = arccos (1− kL) to the x
axis [Fig. 1(b)]. The frequencies of the pair (a′, b′) are
shifted from those of the pair (a, b) by ∆′ ∼ 100 MHz
so that the interference between them is negligible. The
frequency difference between a′ and b′ should match that
between a and b to generate a time-independent coupling.

Since only the x direction is relevant for the SOC dy-
namics, the other two directions can be integrated out,
yielding an effective 1D system. The dynamics of the
system can be described by the GPE

i
∂

∂t
ψ = (H0 +

1

2
ω2
xx

2 +
g

2
|ψ|2)ψ (1)

under the mean-field approximation, where ψ =
(ψ↑, ψ↓)

T
is the two component condensate wavefunc-

tion normalized by the average particle number density
n =

∫
dxψ†ψ, ωx represents trapping frequency of har-

monic trap. For a typical 87Rb BEC, the effective den-
sity interaction ng ∼ 0.1 with ∼ 104 atoms (see ”Ex-
perimental consideration” section) and the spin interac-
tion is negligible. The Raman coupling does not affect
atomic interactions. The single particle Hamiltonian can
be written as [47, 49]

H0 =

(
(px − 1)2 − δ

2
Ω
2 + eiφLΩLe

2ikLx

Ω
2 + e−iφLΩLe

−2ikLx (px + 1)2 + δ
2

)
,
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FIG. 2: (a) Ground state phase diagram, where Ω = 2.7,
φL = 0 and ng = 0.07. The inset shows the first-order phase
transition for small ΩL. Black, dark gray, light gray and white
lines correspond to ΩL = 0.01, 0.1, 0.2 and 0.5 respectively.
(b) Real space density modulation for the ground state with
parameters δ = 0.054 and ΩL = 0.015 as denoted by the black
cross in (a). (c) Illustration of induced couplings between six
most relevant momentum states.

where ΩL is the coupling strength generated by the tun-
neling lasers, φL is the relative phase between the two
Raman couplings, and δ is the detuning.

The ground state of the BEC is obtained from the
imaginary time evolution of the GPE [47, 50] using a
time-split-operator method, resulting in the phase dia-
gram shown in Fig. 2(a) in the ΩL-δ plane, where the
color represents spin polarization 〈σz〉. For weak ΩL,
interactions lock the condensate to one momentum min-
imum, yielding a plane-wave phase at large detunings.
There is a first-order phase transition [black line in the in-
set of Fig 2(a)] when δ crosses 0. With increasing ΩL, the
single-particle coupling dominates over the interaction,
hence the ground state is in a stripe-like phase with a
real-space density modulation [Fig. 2(b)], and 〈σz〉 varies
continuously and smoothly with respect to δ (white line
in the inset of Fig. 2(a)). While a supersolid stripe phase
is defined through spontaneous breaking of both contin-
uous translational and gauge symmetries [51, 52], here
continuous translational symmetry is synthetically bro-
ken by the periodic potential e2ikLx. Nevertheless, the
ground state is the superposition of two band minima,
similar to an authentic stripe phase induced by interac-
tions.

The additional Raman lasers ΩL couple not only the
two band minima, but also other states from both lower
and upper bands. The six most relevant momentum
states ψi are shown in Fig. 2(c). Expanding the wave-

function ψ =
∑6
i=1 Ciψi in this six-state basis, we obtain

a 6 × 6 effective Hamiltonian [47]. The direct coupling
between the two band minima at 2 and 5 is −V0e

∓iφL

with V0 = 1
2ΩL(1 + kL), while the couplings with other

neighboring high-energy states are −
√

1−kL
2 e±iφL and

1
2

√
1− k2

Le
∓iφL , which approach 0 when kL → 1, leav-
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FIG. 3: (a) Time evolution of the populations at different mo-
mentum states for tunneling-phase-driven MSJJ for Ω = 2.7,
δ = 0.014, ΩL = 0.015 and ng = 0.07. (b) and (c): Evolutions
of phase difference (b) and polarization (c) for Josephson os-
cillation (solid blue) and plasma oscillation (dashed orange).
(d) Oscillation period T versus δ when φL is quenched from
φL0 to 0 at Ω = 2.7. Circles are results from the GPE sim-
ulation, while solid (ng = 0.07) and dashed (single particle)
lines are from the two-level model. Different colors corre-
spond to different parameter sets: ΩL = 0.015, φL0 = 0.4π
(blue); ΩL = 0.025, φL0 = 0.4π (orange); and ΩL = 0.015,
φL0 = 0.2π (red). Blue and red dashed lines overlap (purple)
since T is independent of φL0 for the single particle case.

ing V0 as the dominant tunneling term. We focus on the
region ΩL � Ω to avoid significant modification of the
original SOC band dispersion and also for the observation
of Josephson effects with weak tunneling.

Tunneling-phase-driven MSJJ . In an a.c. JJ, a sud-
denly applied voltage can induce an oscillation of su-
percurrents between two superconductors. In our sys-
tem, BECs at the two band minima marked 2 and 5 are
considered as two superfluids and the detuning between
them corresponds to a voltage. A sudden change of δ
induces an oscillation of the BEC between the two min-
ima, yielding a MSJJ whose properties are described in
the supplementary materials [47]. Here we focus on the
relative phase φL for the tunneling element between 2
and 5, which is highly tunable in experiments [44]. In
contrast, such tunneling is a real number for a real space
JJ between two superconductors or double well BECs. A
sudden change of the phase φL (keeping δ constant) can
induce a different type of Josephson effect, i.e., tunneling-
phase-driven JJ.

In Figs. 3(a)–(c) we show dynamics from simulations
of the GPE with a sudden change of the phase φL from
an initial φL0 to φLf = 0. In panel (a) we plot the pop-
ulation Pi (t) at each momentum state for φL0 = 0.4π.
Clearly only the states 2 and 5 at the two band minima
are largely populated while all other states can be ne-
glected due to their small initial populations, weak cou-

pling to states 2 and 5, and high energies. Panel (b)
shows the relative phase between BECs in states 2 and
5. For φL0 = 0.4π (blue solid line), the phase varies
through [0, 2π), representing a Josephson type of oscilla-
tion; while for φL0 = 0.3π (yellow dashed line), the phase
oscillates in a small range, showing a plasma oscillation.
The polarization 〈σz〉 exhibits sinusoidal oscillations for
both cases [panel (c)].

Because the population of the BEC stays mainly at
the two band minima 2 and 5, we can neglect the other
states to derive an effective two-level model, yielding an
equation of motion [46, 47]

i∂t

(
C2

C5

)
=
(
Heff

0 +Heff
I

)( C2

C5

)
, (3)

where Heff
0 =

(
−kLδ −V0e

−iφL

−V0e
iφL kLδ

)
is the ef-

fective single-particle Hamiltonian, and Heff
I =

2gG

(
|C5|2 0

0 |C2|2
)

is the effective interaction term ob-

tained through a variational approximation of the GPE.
Generally, gG depends on |C2|2 |C5|2 but is approxi-
mately a constant when the interaction strength is weak
compared to ER, yielding gG = ng(1−k2

L). Note that the
coupling phase φL in Eq. (3) can be incorporated into the
relative phase between C2 and C5 through a simple phase
transformation, therefore the quench of φL is mathemati-
cally equivalent to a quench of the relative phase between
condensates at two minima (2, 5), although the latter is
experimentally impractical.

When the coupling V0 is strong, the dynamics of the
BEC are governed by single particle physics, yielding a
linear Rabi oscillation with period T = π/ω, where the
Rabi frequency ω =

√
(kLδ)2 + |V0|2. Such a simple for-

mula for the period does not apply when the tunneling
V0 is comparable to or weaker than the inter-particle
interactions, although the two-level model still agrees
reasonably well with the GPE simulations, as shown in
Fig. 3(d). We see that the period is similar for interacting
and single-particle cases for a large coupling ΩL = 0.025,
but shows strong deviations [see the sharp peak for the
solid red line in Fig. 3(d)] from the single particle curve
for ΩL = 0.015. For a very large detuning δ (i.e., volt-
age), all T collapse to the same line as the single particle
case, as expected.

In the two-level approximation, we can choose the nor-
malization |C2|2 + |C5|2 = 1, and recast the equation of
motion (3) as [47]

∂tz = −
√

1− z2 sin (φ− φLf ) , (4)

∂tφ =
gG
V0
z +

z√
1− z2

cos (φ− φLf ) +
kLδ

V0
, (5)

using the population difference z = (N2 − N5)/N and
relative phase φ = θ2 − θ5, where Ni and θi are defined
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FIG. 4: (a) Classical trajectories in z-φ plane for 0 < φL0 ≤ π,
with initial value of z at 0.434. (b) Same as (a) but generated
through the GPE simulation. Parameters are ng = 0.07, δ =
0.008 (corresponding to initial polarization 0.434), Ω = 2.7
and ΩL = 0.015. The three colors correspond to φL0 = 0.2
(blue), 0.4 (orange), 0.8 (green), respectively. The arrows
denote the direction of each trajectory.

through C2 =
√
N2e

iθ2 and C5 =
√
N5e

iθ5 . These two
classical equations characterize the essential dynamics of
MSJJs.

Fig. 4(a) shows how the initial value φL0 affects the
dynamics. For a relatively small φL0, the classical tra-
jectory is a closed loop around a fixed point with a small
amplitude of z and a confined range of phase change ∆φ,
showing a plasma oscillation [17]. With increasing φL0,
the amplitudes for both φ and z increase. Beyond a
critical φL0, φ varies through [0, 2π), showing a Joseph-
son oscillation. The system returns to plasma oscillation
around another fixed point when φL0 exceeds another
critical point. These classical trajectories from the two-
level model agree with those from the GPE simulations
in Fig. 4(b). Note that the trajectories around two fixed
points have opposite directions. In the single-particle
case, these two fixed points correspond to two opposite
Zeeman fields for spin precession of the Rabi oscillation
[47].

Strong interaction between atoms can dramatically
change the BEC dynamics and lead to a self-trapping
effect [17, 22], where the oscillation amplitude of z is
strongly suppressed. We consider a symmetric oscilla-
tion with δ = 0. For a weak interaction of ng = 0.07,
the oscillation of 〈σz〉 shows a perfect sinusoidal pattern
(blue line), as seen by the blue line Fig. 5(a) obtained
from the GPE simulation. When the interaction is dou-
bled ng = 0.14, the oscillation amplitude is reduced and
the average 〈σz〉 in one period changes from 0 to a fi-
nite value (orange line). For a larger but still practicable
interaction of ng = 0.35, the oscillatory behavior disap-
pears and the condensate is locked at the initial band
minimum because of strong density interaction. Such
nonlinear self-trapping effects can also be captured in the
classical trajectories in the two-level model [Fig. 5 (b)].
With increasing ng, the initial plasma oscillation with a
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FIG. 5: (a) Self-trapping effects from the GPE simulation.
The curves correspond to ng = 0.07 (blue), 0.14 (orange)
and 0.35 (green), for Ω = 2.7, ΩL = 0.03, φL0 = 0.2π and
δ = 0. (b) Classical phase-plane from the two-level model.
The colors are the same as in (a) except ng = 0.1 for the red
curve.

large variation of z becomes the self-trapped Josephson
oscillation with a small z change.

Experimental consideration. The periodic density
modulation for the stripe-like ground state can be mea-
sured using Bragg scattering, similar to the recent exper-
iments for observing supersolid stripe phases [53]. Con-
sider a 87Rb BEC confined in a quasi-1D harmonic trap.
The Raman lasers for generating SOC are incident at
45◦ with the x axis, yielding an effective wavevector
kR = 2π√

2λ
with λ = 784 nm. The corresponding re-

coil energy ER = 2π~ × 1.8 kHz, thus the time and
length units are ~/ER = 0.088 ms and 2π/kR = 1109
µm, respectively. The Raman coupling strength for SOC
Ω = 2.7ER, thus kL = 0.738kR and the second pair of Ra-
man lasers should be incident at an angle θL = 58.6◦ with
respect to the x axis. The s-wave scattering length of
87Rb is as = 100.86a0, where a0 is the Bohr radius. Con-
sidering a particle number 104 to 106 and typical trap-
ping frequencies ωx ∼ 2π × 5 Hz and ωy = ωz ∼ 2π × 75
Hz, one has the average particle density n ∼ 1013 to
1014 cm−3 under Thomas-Fermi approximation [45]. The
effective interaction strength can be evaluated through
ng = 4π~2asn/m ∼ 0.07 to 0.48 ER, resulting in the time
period T ∼ 10 ms for tunneling-phase-driven Josephson
oscillations [Fig. 3(d)].

Discussion and Conclusion. Our two major pro-
posed concepts, momentum-space JJ and tunneling-
phase-driven JJ, may also be realized in other physical
systems where a double well band dispersion with two
almost degenerate local band minima can be generated
to ensure the long life time of the BEC at different mo-
menta [54]. For instance, the double-well band disper-
sion may be realized in optical superlattices with Ra-
man assisted tunneling [55], where two momentum min-
ima can be coupled with additional Raman transitions.
The double-well band dispersion can be generalized to
triple-well or even more multiple-degenerate momentum
states, and the coupling between neighboring minima
may form a momentum-space optical lattice [54], which
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can be considered as a Josephson junction array [20] in
momentum space. The linear momentum discussed here
can be generalized to orbital angular momentum (OAM),
and an OAM-space JJ may be realized for a BEC on
a ring utilizing recent proposals for spin-OAM coupling
[56–58] for cold atoms. The discreteness of OAM states
may induce interesting Josephson effects that are differ-
ent from those in continuous real or momentum space.
Finally, although absent in solid-state superconductors,
the proposed tunneling-phase-induced JJ may be realized
in real-space optical superlattices with Raman assisted
tunneling [55], where the phase for the Raman tunneling
may also be tuned.

In conclusion, we propose a new category of Josephson
effects in momentum space, which can be built in a spin-
orbit coupled BEC. In addition to traditional voltage-
driven Josephson effects, we introduce quenching of the
tunneling phase as a novel driving mechanism. Our work
may motivate further experimental and theoretical works
for studying MSJJs and provides a platform for exploring
their applications in building novel quantum mechanical
circuits.
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