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Frustrated quantum magnets are a central theme in condensed matter physics due to the richness of their phase
diagrams. They support a panoply of phases including various ordered states and topological phases. Yet, this
problem has defied solution for a long time due to the lack of controlled approximations which make it difficult
to distinguish between competing phases. Here we report the discovery of a special quantum macroscopically
degenerate point in the XXZ model on the spin 1/2 kagome quantum antiferromagnet for the ratio of Ising
to antiferromagnetic transverse coupling Jz/J = −1/2. This point is proximate to many competing phases
explaining the source of the complexity of the phase diagram. We identify five phases near this point including
both spin-liquid and broken-symmetry phases and give evidence that the kagome Heisenberg antiferromagnet is
close to a transition between two phases.

The history of quantum frustrated magnetism began in
1973 with Anderson’s suggestion that the ground state of the
nearest-neighbor (n.n.) Heisenberg model on the triangular
lattice was a quantum spin-liquid [1]. While we now know
that this particular model does not support a spin-liquid, both
experimental and theoretical evidence has been building for
quantum spin-liquids in various lattices built of triangular mo-
tifs. Materials such as Herbertsmithite (a kagome lattice of
Cu2+ ions) [2] and Na4Ir3O8 (a hyper-kagome lattice of Ir4+

ions) [3] fail to order down to low temperatures suggesting a
possible spin-liquid ground state. This is supported by theo-
retical calculations which show that a panoply of spin-liquids
(or exotic ordered phases) occur in a variety of Hamiltoni-
ans [4–17]. This Letter presents an explanation of multiple
energetically competitive phases in these models.

We first report the existence of a new macroscopic quantum
degenerate point on kagome and hyper-kagome lattices in the
spin-1/2 XXZ Hamiltonian [18–23],

HXXZ [Jz] =
∑
〈i,j〉

Sxi S
x
j + Syi S

y
j + Jz

∑
〈i,j〉

Szi S
z
j (1)

at HXXZ[−1/2] (notated as HXXZ0 [24]). Si are spin-1/2 op-
erators on site i, 〈i, j〉 refer to nearest neighbor pairs and Jz is
the Ising coupling. The degeneracy exists in all Sz sectors and
all finite system sizes. For kagome, we explicitly demonstrate
this in Fig. 1 where we perform an exact diagonalization (ED)
on the N = 30 site kagome cluster in different Sz sectors.
As we approach Jz = −1/2 many eigenstates collapse to the
same ground state eigenvalue.

We solve analytically for much of the exponential manifold,
and our solutions apply to any lattice of triangular motifs with
the Hamiltonian of the form,

H =
∑
∆

HXXZ0(∆) (2)

whereHXXZ0(∆) is theXXZ0 Hamiltonian on a triangle ∆,
as long as its vertices can be colored by three colors with no
two connected vertices being assigned the same color. Some
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Figure 1. (Color online) Energy spectra (showing the 8 lowest en-
ergies in every momentum sector with respect to the lowest energy
state in K = (0, 0)) versus Jz for a 30 site kagome cluster with
periodic boundary conditions. The panels correspond to various
Sz sectors, (top left) Sz = 0, (top right) Sz = 5, (bottom left)
Sz = 10, (bottom right) Sz = 14. A quantum degeneracy is seen at
Jz = −1/2. The case of Sz = 14 corresponds to one spin down in
a sea of up spins and maps to the non-interacting solution, hence the
spectrum does not change with Jz.

three-colorable lattices with representative three-colorings are
shown in Fig. 2. Our general result overlaps the XXZ0 point
on the triangular lattice of Ref. [25] and a different analyti-
cally solvable Hamiltonian on the zig-zag ladder of Ref. [26].

Finally, we show how the XXZ0 point on the kagome lat-
tice is embedded in the wider phase diagram demonstrating its
relation to the previously discovered spin-liquid at the Heisen-
berg point [7, 8, 10] as well as nearby magnetically ordered
phases; our results suggest an additional intermediate phase
transition in the middle of the spin-liquid region.

Exact Ground States at Jz = −1/2 — Any Hamiltonian of
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Figure 2. (Color online): Representative three-coloring solutions on
various lattices with triangular motifs. (a) Saw-tooth (b) Kagome (c)
Triangular (d) Shastry-Sutherland [27] (with J2 = 2J1, note, the
bold diagonal lines are associated with two triangles whereas other
edges are part of only one triangle) (e) Icosidodecahedron (f) Hyper-
kagome lattice

the form of Eq. (2) has ground states of the form

|C〉 ≡ PSz

(∏
valid

⊗|γs〉
)

(3)

where {|γs〉 = |a〉, |b〉 or |c〉}, denoted as "colors" on site s
are defined as, |a〉 ≡ 1√

2

(
| ↑〉+| ↓〉

)
, |b〉 ≡ 1√

2

(
| ↑〉+ω| ↓〉

)
,

|c〉 ≡ 1√
2

(
| ↑〉 + ω2| ↓〉

)
, where ω = ei2π/3. Taking the

quantization axis to be the z-axis, the colors correspond to
spin directions in the XY plane that are at 120 degrees rela-
tive to one another. Valid colorings satisfy the three-coloring
condition. PSz projects into a particular total Sz sector.

For Jz = −1/2 and a single triangle, six states; the fully
polarized state | ↑↑↑〉 and the chiral states | ↑↓↓〉 + ω| ↓↑↓
〉 + ω2| ↓↓↑〉 and | ↑↓↓〉 + ω2| ↓↑↓〉 + ω| ↓↓↑〉 and all their
Kramers pairs; are exactly degenerate. Thus Eq. (2) is recast
as,

H =
∑
∆

H∆ =
3

2

∑
∆

P∆ −
3

8
N∆ (4)

where N∆ is the number of triangles and P∆ is a projector
on the triangle P∆ ≡ |+〉〈+| + |−〉〈−| and |+〉 and |−〉 are
Kramers pairs of non-chiral one-magnon states on the triangle,
|+〉 ≡ 1√

3

(
| ↑↑↓〉 + | ↑↓↑〉 + | ↓↑↑〉

)
and |−〉 ≡ 1√

3

(
| ↓↓↑

〉+ | ↓↑↓〉+ | ↑↓↓〉
)

This rewriting can be carried out on any
lattice of triangles; if a bond is used by multiple triangles this
constrains the coupling constant between these bonds.

The XXZ0 Hamiltonian is thus a sum of positive semi-
definite non-commuting projectors. Any wavefunction that
simultaneously zeroes out each projector consistently is guar-
anteed to be a ground state. Such "frustration-free" Hamiltoni-
ans include Majumdar-Ghosh [28] (generalized by Klein [29])
and Affleck-Kennedy-Lieb-Tasaki [30–33] Hamiltonians. Ze-
roing out a projector requires that only components exactly

orthogonal to states |+〉 and |−〉 enter the full many body
wavefunction; this is indeed achieved by the product state
|ψ〉 ≡

∏
valid⊗|γs〉. We also note that such "three-coloring

states" have a long history and have been explored in several
contexts [24, 34–40].

The product state |ψ〉 does not conserve total Sz but the
XXZ Hamiltonian does conserve it. Therefore, projecting
each three-coloring solution to each Sz sector is also a ground
state leading to Eq. (3). Note that three-colorings which differ
simply by relabeling colors are identical up to a global phase
(see Supplement).

Macroscopic Degeneracy and additional ground states—
While there are only two ways of three-coloring the triangu-
lar lattice, there are an exponential number of ways of doing
so on the kagome (scaling as 1.208N [41]) and hyper-kagome
lattices. The precise number of ground states varies from sec-
tor to sector because of the loss of linear independence of the
unprojected solutions under projection. For typical Sz of in-
terest, particularly Sz = 0, there are still an exponential num-
ber of linearly independent solutions. This counting is made
precise by forming the overlap matrix SC,C′ ≡ 〈C|C ′〉 and
evaluating its rank≡ R(S) numerically; our results have been
shown in Table I and the Supplement. The case of one down
spin in a sea of up spins which maps to the non-interacting
problem with a flat-band with a quadratic band touching [42]
is also correctly captured.

On several representative clusters with open boundary con-
ditions (but always with completed triangles), we never find
solutions outside the coloring manifold which suggests (but
does not prove) the possibility that coloring solutions describe
all degeneracies on open lattices. However, for kagome on tori
we find, for low fillings, degenerate solutions not spanned by
colorings.

Connection to the wider Kagome phase diagram— We now
show how theXXZ0 point is embedded in the larger kagome
phase diagram. We focus on Sz = 0 and the fully symmet-
ric sector of K = (0, 0) sector (see Supplement), and study
an extended Hamiltonian involving nearest neighbor (nn) and
next-nearest neighbor (nnn) terms,

H[Jz, J2] = Hnn
XXZ [Jz] + J2H

nnn
XXZ [Jz] (5)

where Hnnn
XXZ [Jz] =

(∑
〈〈i,j〉〉 S

x
i S

x
j + Syi S

y
j + JzS

z
i S

z
j

)
;

〈〈i, j〉〉 referring to nnn pairs. We use a combination of ana-
lytical arguments and ED on the 36d cluster [43, 44] on a grid
of points in the (Jz, J2) space. As Fig. 3 shows, we find five
phases near XXZ0: a ferromagnetic phase, a q = 0 phase,
a
√

3×
√

3 phase and (potentially) two spin-liquids. We give
numerical evidence that all these phases, other than the ferro-
magnet, connect from near (or touching) XXZ0 to the Heisen-
berg point.

At Jz = −1/2 and J2 > 0, (notated AF-line) all trian-
gles in the Hamiltonian are of the XXZ0 form and remain
consistently three-colorable. Three-coloring both nn and nnn
triangles constrains the allowed colorings leaving only two
colorings in the well known q = 0 pattern. This phase sur-
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Lattice Method nb = 1 nb = 2 nb = 3 nb = 4 nb = 5 nb = 6 nb = bN/2c # 3-colorings

sawtooth obc ED 6 16 26 31 32 32 32 32
5 triangles R(S) 6 16 26 31 32 32 32

3× 3 kagome obc ED 15 102 414 1117 3808
(33 sites) R(S) 15 102 414 1117 2136 3078 3808

3× 3 kagome pbc ED 10 38 60 41 40 40 40 40
R(S) 10 34 40 40 40 40 40

4× 3 kagome pbc ED 13 68 169 172 137 136 136
R(S) 13 68 134 136 136 136 136

Table I. Number of ground states in different Sz sectors (mapped to hard-core boson number nb) on several lattices (of size N ) with triangular
motifs at Jz = −1/2, J2 = 0. R(S) is the rank of the overlap matrix indicating the number of linearly independent 3-coloring modes and ED
refers to the exact number of ground states. The kagome cluster with open boundary conditions (obc) has completed triangles, resembling the
periodic counterpart (pbc) in appearance.

vives for Jz > −1/2, at small J2, and is primarily identified
by peaks at the M point (Fig. S2 of the Supplement) in the
spin-structure factor S(~q) ≡ 1

N

∑
i,j〈Si ·Sj〉ei~q·(~ri−~rj) where

~ri refers to the real space coordinates of the ith lattice site,
N is the total number of sites and 〈Si · Sj〉 is the spin-spin
correlation function. On the other hand, it can be rigorously
shown the minimum energy state upon perturbing the AF-line
to Jz < −1/2 is the fully polarized ferromagnetic state.

At Jz = −1/2 and J2 < 0, we find evidence for the√
3×
√

3 phase. While we can not solve for the exact ground
state, the state which colors nnn triangles the same color (i.e.
the
√

3 ×
√

3 phase) minimizes the nnn energy within the
three-coloring manifold. We numerically verify this phase by
looking at S(K), finding it survives for Jz near and on both
sides of −1/2.

By tracing paths through parameter space with large values
of S(~q) at the K and M points, we find that both the q = 0
phase and

√
3 ×
√

3 phases near the XXZ0 point extend to
the Heisenberg point at non-zero J2. To locate the boundaries
of these phases, we perform sweeps through J2 at fixed Jz
and identify dips in the wavefunction fidelity defined to be

f(Jz, J2) ≡
∣∣∣〈ψ(Jz, J2−∆J2/2)|ψ(Jz, J2 +∆J2/2)〉

∣∣∣ (6)

where ψ(Jz, J2) is the ground state wavefunction, ∆J2 is the
step size in the J2 direction. For both magnetically ordered
phases, the location of these dips form lines emanating from
(or close to) the XXZ0 point that extrapolate to the Heisen-
berg point (Jz = 1) to values J2 ≈ 0.16 for q = 0 and
J2 ≈ −0.06 for

√
3×
√

3. These values are within the bounds
previously found by a DMRG study [45], but disagree with a
variational study by Ref. [46] which finds instead a valence
bond crystal. In the intermediate phase(s), we see a decrease
in the magnitude of the structure factor peaks consistent with
a change in phase to a spin-liquid.

Near XXZ0 we do not detect fidelity dips and see larger
structure factors that extend much closer to the line J2 = 0.
This leaves two plausible scenarios: (1) the spin-liquid(s) ter-
minate at Jz > −1/2 for all J2 or (2) the phase boundaries
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Figure 3. (Color online): The phase diagram in the Jz − J2 plane
on the 36d lattice showing five phases - the ferromagnet (FM), the
magnetically ordered phases (q = 0 and

√
3×
√
3), and the spin liq-

uids (SL-A and SL-B). Circles correspond to the energy difference
E(Sz = 0)N=36 − ETDL(Sz = N/2) between the Sz = 0 sector
and fully polarized state ranging from deep blue (negative) to deep
red (positive). The diamonds are colored based on the structure factor
at the M point (S(M)) and squares are colored based on the struc-
ture factor at the K point (S(K)). The darkest color corresponds to
the largest structure factor on the graph. Star symbols correspond to
location of fidelity dips and the error-bars indicate the uncertainty in
the location of the phase boundaries (when scanned in the J2 direc-
tion) and correspond to the grid-spacing used for the computation of
the fidelity. The black hexagon (at Jz ≈ 0.5, J2 ≈ 0.10) is a kink
in the second derivative of the fidelity; beyond the corresponding Jz

the fidelity dip is not noticeable and the phase boundary is just an
extrapolation. Phase boundaries are marked with dotted lines, which
are guides to the eye. The solid line is where the semiclassical energy
difference between the FM and the unprojected

√
3×
√
3 state goes

to zero.

extend to XXZ0 but finite size-effects near it become large
making it difficult to resolve the transition.

We find an additional fidelity dip at J2 ≈ 0 and Jz > −1/2
in the region where other studies [45] identify a single spin-
liquid phase. This interesting finding indicates the existence
of an additional transition in this region. Our analysis in
this work is largely ambivalent about the nature of these two
phases but earlier evidence for a spin-liquid phase at Jz = 1



4

0.10 0.05 0.00 0.05 0.10 0.15

J2

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Fi

d
e
lit

y
<ψJ2 =−0.02|ψJ2

> <ψJ2 =0.02|ψJ2
>

0.10 0.05 0.00 0.05 0.10 0.15

J2

12.4

12.2

12.0

11.8

11.6

11.4

11.2

11.0

E
n
e
rg

y

1.0 0.5 0.0 0.5 1.0

kx/π

1.0

0.5

0.0

0.5

1.0

k
y/
π

1.0 0.5 0.0 0.5 1.0

kx/π

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

Figure 4. (Color online) All data is at Jz = 0.1 for the 36d lat-
tice. Top Left: Overlap of the ground state at J2 with respect to
reference ground state wavefunctions at J2 = −0.02 (blue) and
J2 = 0.02 (red). Dashed lines represent transitions as measured
by fidelity. Top Right: Energy of the two lowest states in the sym-
metric representation of the K = (0, 0) sector. There are additional
state(s) between these two states in other quantum-number sectors.
Bottom: The static spin structure factor S(~q) of the ground state for
J2 = −0.02 (left) and J2 = 0.02 (right). The solid and the dot-
ted lines show the first and the extended Brillouin zones respectively.
The high symmetry points of the latter correspond to K (corners of
the hexagon) and M (midpoints of edges) points. On going from
J2 < 0 to J2 > 0, the intensity is transferred from K to M points.

and both J2 > 0, J2 < 0 [14, 45] suggests a possible transi-
tion between two spin-liquids. Interestingly, a recent IPEPS
study [47] found nearly degenerate variational degenerate en-
ergies for the Q1 = Q2 and Q1 = −Q2 [38] Z2-spin liquids
which they interpret as evidence for a parent U(1) DSL; given
our results, another reasonable interpretation is that there is a
transition between these two states.

To further understand the nature of the fidelity dips, we con-
sider the ground state and excited state in the same quantum
number sector as a function of J2 at Jz = 0.1 (Fig. 4, top
right); the true first excited-state is in another sector. We see
a (formally avoided) "level-crossing" indicated by a shrinking
gap between these states around J2 ≈ 0. This crossing causes
the fidelity dip and leads to the overlap of the wavefunction
on both sides of J2 ≈ 0 being small with respect to a refer-
ence point on the other side (see Fig. 4, top left). In addition,
the structure factors of the two ground states at positive and
negative J2, despite not having large peaks, are qualitatively
distinct (see Fig. 4, bottom).

Conclusion— In summary, we have (1) shown thatHXXZ0 is
macroscopically quantum degenerate on the kagome and hy-
perkagome lattices, (2) shown that all projected three-coloring
states are exact ground states ofHXXZ0 on any three-colorable
lattice of triangular motifs explaining this macroscopic degen-
eracy, (3) shown that multiple phases in the J2−Jz phase dia-
gram, including the spin-liquid(s) at the KAHF, are proximate
to the XXZ0 point, and (4) given evidence for a transition

between two phases at J2 = 0 for −0.5 < Jz < 1. Our find-
ings suggest that the XXZ0 point controls the physics of the
Heisenberg and XY points [15, 48] on the kagome and the
existence of a transition near the KAHF might help resolve
conflicting numerical evidence for gapless and gapped states
respectively. While our focus here has been on the uniform
kagome lattice, the exponential degeneracy also applies in the
case where the coupling constant in each triangle is disordered
(or staggered) as well as to finite clusters of triangles such as
the icosidodecahedron; in fact, the latter explains the nearly
degenerate manifold on this cluster in the XY regime [49].

The central coloring ideas extend to other frustrated lattices
with four (or higher) site motifs [50–52]. For example, define
a Hamiltonian which annihilates four-coloring states made of
one a ≡ | ↑〉 + | ↓〉, b ≡ | ↑〉 + i| ↓〉, c ≡ | ↑〉 − | ↓〉 and
d ≡ | ↑〉 − i| ↓〉 on each square of a square lattice or tetrahe-
dron of the pyrochlore lattice. Up to a constant, this is H =
2HXXZ [−1/4] +

∑
i<j,k<l,diff S

+
i S

+
j S
−
k S
−
l − 2 Sz1S

z
2S

z
3S

z
4

where “diff” indicates i, j, k, l are distinct (see Supplement
for the derivation that used the DiracQ package [53]). Notice
that on the square this forces the nnn J2 coupling to be half
the nn J1 coupling; interestingly J2/J1 = 1/2 has been pro-
posed to be a SL state on the square for Heisenberg and XY
models [54].We believe that the macroscopic degeneracy of
this Hamiltonian on the square and pyrochlore lattices will be
a source of multiple phases on these lattices [55, 56].

Finally, we note that three-coloring states can be used
to construct accurate many-body wavefunctions [12, 57–59].
Typically Jastrow factors have been introduced only on top of
a single coloring; our present investigation suggests that a lin-
ear combination of colorings may provide accurate results in
the vicinity of the XXZ0 point.
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