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Using exact quantum Monte Carlo calculations, we examine the interplay between localization of
electronic states driven by many-body correlations and that by randomness in a two-dimensional
system featuring linearly vanishing density of states at the Fermi level. A novel disorder-induced
non-magnetic insulating phase is found to emerge from the zero-temperature quantum critical point
separating a semimetal and a Mott insulator. Within this phase, a phase transition from a gapless
Anderson-like insulator to a gapped Mott-like insulator is identified. Implications of the phase
diagram are also discussed.

Introduction — In disordered low-dimensional non-
interacting systems, single-particle eigenstates are
exponentially localized due to coherent backscattering.[1]
Over the last decade, the study of correlation effects
on disordered, non-interacting Anderson insulators
has witnessed an extraordinary development.[2, 3] In
particular, the concept of many-body localization[4]
has received much attention, and profoundly extended
our pictures of the metal-insulator transitions to
many fundamental non-equilibrium questions such as
eigenstate thermalization.[3]

In a second non-interacting context, free-fermions
on a honeycomb lattice, the discovery of topological
insulators[5, 6] has further enriched our understanding of
matters by going beyond Landau’s symmetry breaking
theory. A current frontier of theoretical research
focuses on expanding the phenomenon to correlated
systems.[7, 8] Remarkable results with implications
outside condensed matter physics have been reported.
For example, topological superconductors[6] have been
shown to display fascinating properties including the
emergence of space-time supersymmetry.[9–11]

Since disorder and interactions are both present in
real materials, it is natural to put these two new
areas together and investigate the role of correlations
on a disordered Dirac system. Study of this problem
in the case of attractive interactions has already led
to the interesting conclusion that disorder induces
a superconducting phase by giving rise to a non-
zero density of states.[12] In this paper we address
the important questions which arise when repulsive
interactions and randomness are included in a system
with a Dirac spectrum, and, specifically, the interplay
of the quantum critical point associated with the semi-
metal to antiferromagnet (AF) transition in the clean
system with the localizing effects of disorder.

Phenomenologically, this separation of the metal-
insulator and AF transitions is reminiscent of the
problem in the physics of the disordered bosonic Hubbard
Hamiltonian:[13, 14] the question of whether there could
be a direct superfluid to insulator transition, or whether

a “Bose Glass” phase always intervenes. This issue was
very actively debated over more than a decade[15–22]
before finally being settled.[23] Even so, subtleties of the
result continued to be explored.[24, 25]

Our work here marks the first step in addressing
similar issues for fermions. We focus on the Anderson-
Hubbard model on the honeycomb lattice, a minimal
model that includes both disorder and interactions in a
2D Dirac system. The model is solved numerically using
the exact determinant quantum Monte Carlo (DQMC)
method[26] that treats disorder and correlations on
the same footing. Electronic, transport, and magnetic
properties are analyzed, resulting in the key findings
summarized in the phase diagram Fig. 1. Whereas in
the absence of disorder the metal-insulator and AF phase
transitions coincide at a common critical coupling,[27] an
intervening non-magnetic insulating phase emerges from
the quantum critical point with the addition of disorder.
Inside this novel non-magnetic phase, a subtle crossover
between two different types of insulators is uncovered.
Model and method — The Anderson-Hubbard model is
defined as

Ĥ =−
∑
〈ij〉σ

tij

(
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)
− µ

∑
iσ

n̂iσ

+ U
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(
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2

)(
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1

2

)
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ĉ†iσ (ĉiσ) is the spin-σ electron creation (annihilation)
operator at site i. U > 0 is the interaction strength. tij
is the hopping integral between two near-neighbor sites i
and j. The chemical potential µ determines the density
of the system, and n̂iσ is the number operator. Disorder
is introduced through the hopping matrix elements tij
chosen uniformly P (tij) = 1/∆ for tij ∈ [t − ∆/2, t +
∆/2], and zero otherwise. The strength of disorder is
characterized by ∆. We set t = 1 as the energy scale and
consider µ = 0 where the disordered system is half-filled
and particle-hole symmetric.[28]

Within the DQMC approach,[26] the Hamiltonian
Eq. (1) is mapped onto free fermions coupled to space and
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FIG. 1. Phase diagram of disordered Hubbard model
on the honeycomb lattice at half-filling. ∆ labels the
disorder strength and U represents the local Coulomb
repulsion. Phase boundary lines are guides to the eyes. The
metallic phase boundary is determined by the temperature
dependence of the conductivity σdc and the region of long
range AF order by finite size scaling of the AF structure
factor. The (black) triangle point is obtained using the
Drude weight data presented in the Supplemental Materials.
Lines are guides to the eyes. Although these transitions
coincide in the clean limit, for non-zero ∆ an intermediate,
magnetically disordered, insulator phase intervenes. This
phase itself contains a transition from Anderson-like to Mott-
like insulators. The inset shows the geometry of the L = 6
lattice where sublattices are labeled by blue and red colors.

imaginary-time dependent Ising fields. The integration
over all possible field configurations is carried out by
Monte Carlo sampling. The discretization mesh ∆τ
of the inverse temperature β = 1/T was chosen small
enough so that the “Trotter errors” are smaller than
those associated with the statistical sampling. This
approach allows us to compute static and dynamic
observables at a given temperature T . Because of the
particle-hole symmetry, the system is sign-problem free
and the simulation can be performed at large enough β to
converge to the ground state. Data reported are obtained
on 2L2 honeycomb lattices with periodic boundary
conditions. The inset of Fig. 1 shows the L = 6 geometry.
In the presence of disorder, results are averaged over
20 disorder realizations.[29] The error bar reflects both
statistical and disorder sampling fluctuations.

To study the possible metal-insulator transition
(MIT), we examine the T -dependent DC conductivity
computed from the momentum q- and imaginary time
τ -dependent current correlation function[30]

σdc(T ) =
β2

π
Λxx(q = 0, τ = β/2). (2)

Here Λxx(q, τ) = 〈ĵx(q, τ) ĵx(−q, 0)〉, and ĵx(q, τ) is
the current operator in the x-direction. The validity of

FIG. 2. (a) DC conductivity σdc versus temperature T
in the clean limit ∆ = 0 computed at various coupling
strengths for the L = 12 honeycomb lattice. (b) Scaling
behavior of the normalized AF spin structure factor SAF /Nc

at corresponding U values. Solid and dashed lines represent
third-order polynomial fits to the data.

Eq. (2) has been benchmarked extensively.[28, 30, 31]
For disordered systems, the equation provides a good
approximation if the temperature is lower than the
energy scale set by the disorder strength ∆.[30]

In addition to transport properties, we also examine
the charge excitation gap and the antiferromagnetic (AF)
structure factor at wave vector Q = Γ,

SAF =
1

Nc

〈〈(∑
r∈A

Ŝzr −
∑
r∈B

Ŝzr

)2〉〉
∆

. (3)

Here Nc is the number of unit cells, A and B are
sublattices of the honeycomb lattice, and Ŝzr is the z-
component spin operator. The inner (outer) bracket 〈. . .〉
denotes Monte Carlo (disorder ∆) average.
Results and discussion — We first demonstrate results
for the disorder-free system. Fig. 2(a) shows σdc(T )
computed on the L = 12 lattice across several coupling
strengths. Regardless of U , the conductivity increases
until the temperature is lowered to T & 0.25. For
U ≤ 3.8, dσdc/dT < 0 and σdc diverges as the
temperature is further decreased to the limit T → 0.
For U ≥ 4.0, the σdc(T ) curve is concave down and
approaches zero with decreasing temperature. This
change of low-T behavior in σdc(T ) suggests that there
is a metal-insulator transition.[28] Given the available
data, the estimated MIT critical point is Uσc ∼ 3.9 ±
0.1. To examine the magnetic transition, Fig. 2(b)
presents finite-size scaling study of the AF spin structure
factor SAF /Nc. By extrapolating the data to the
thermodynamic limit, we estimate the critical point of
the magnetic phase transition to be UAFc ∼ 4.0±0.3. The
critical points coincide and are consistent with previous
findings.[32]

Next we move on to the disordered case, presenting
transport property results first. We begin the discussion
by noting that in disordered graphene and without
interactions, electronic transport has been extensively
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investigated.[33–41] Fig. 3 shows σdc(T ) computed in
a range of disorder strengths at four representative
coupling strengths. In panel (a)–(c) of the figure, the
low temperature behavior of σdc clearly indicates that
there is a disorder-driven metal-insulator transition. For
instance, at U = 1.0 and ∆ = 0.5, the conductivity
curve is concave up dσdc/dT < 0 for T . 0.2. By
the time the temperature drops to T ∼ 0.1, σdc(T ) is
increasing rapidly, indicating that the system is metallic.
At ∆ = 2.5, on the other hand, σdc(T ) decreases as the
temperature is lowered, and approaches zero as T → 0,
suggesting that the system has become insulating. At
U = 1.0, the metal-insulator transition critical disorder
strength is estimated to be ∆c ∼ 1.7± 0.2. ∆c becomes
smaller as U is raised. The critical disorder strengths for
the MIT are ∆c ∼ 1.5 ± 0.2 and 1.1 ± 0.1 for U = 2.0
and 3.0 respectively. At U = 4.0, the conductivity
curve plotted in Fig. 3(d) exhibits an insulating response
dσdc/dT > 0 and approaches zero as T → 0 for any
∆ ≥ 0.5. As an independent check of the above findings,
we have computed the Drude weight D(ωn) in the low
Matsubara frequency limit ωn → 0 at ∆ = 0.5. The
data presented in the Supplemental Materials point to a
MIT at a coupling strength between U = 3.0 and 4.0,
consistent with transport results.

The “metallic” region of the phase diagram Fig. 1
summarizes these transport results. As previously found
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FIG. 3. Temperature dependence of the DC conductivity σdc

measured on the L = 12 lattice with disorder at (a) U = 1.0,
(b) U = 2.0, (c) U = 3.0, and (d) U = 4.0. In each figure,
lines are guides to the eyes. Metallic and insulating behaviors
are indicated by solid and dashed lines respectively. In panel
(a)-(c), the low-T behavior of σdc clearly indicates a disorder-
driven metal-insulator transition.

for the quarter-filled square lattice Hubbard model with
bond disorder,[28] our data suggest that the onsite
Hubbard repulsion can introduce metallic behavior in the
2D honeycomb lattice even at the Dirac point where the
density of states is vanishing for U = 0.

Another electronic property of interest is the single-
particle gap. Without disorder, the half-filled Hubbard
model on the honeycomb lattice exhibits a charge (Mott)
excitation gap at sufficiently large U .[27, 32] The non-
interacting Anderson insulator, on the other hand,
is gapless at the Fermi level (in the thermodynamic
limit).[42, 43] Although the gap is not an order parameter
associated with symmetry breaking, it nevertheless can
be used to establish the existence of the Mott insulator.

The single-particle gap can be extracted from
the density of states, however here we distinguish
between gapped and gapless systems using the charge
compressibility κ(µ) = d〈n̂(µ)〉/dµ at the Fermi level,
where 〈n̂(µ)〉 is the average density at chemical potential
µ. Results for κ(µ) evaluated at inverse temperature β =
10 are depicted in Fig. 4 for L = 12 with various disorder
∆ and coupling strength U combinations. Tuning µ away
from half-filling breaks the particle-hole symmetry and
leads to a sign problem. However, the problem becomes
less severe in the presence of disorder[44], and we are able
to obtain accurate data.

In the thermodynamic limit, the compressibility κ of
a gapped (gapless) system is vanishing (finite) at T = 0.

FIG. 4. Charge compressibility κ versus chemical potential
µ computed for the linear size L = 12 disordered lattice
at inverse temperature β = 10. To distinguish between
gapped and gapless phases, we have adopted a finite threshold
κ . 0.04 deduced from the procedure described in the
Supplemental Materials.
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FIG. 5. Finite-size scaling studies of the AF spin structure
factor. Statistical errors of DQMC results are smaller than
the symbol size. Lines represent cubic polynomial (in 1/L)
fits to the data. A finite y-axis intercept in the L → ∞
limit indicates the existence of long-range magnetic order.
Here again, we have used solid and dashed lines to label
magnetically ordered and disordered phases.

However, on finite lattices and at non-zero temperatures,
requiring κ = 0 overestimates the critical coupling due
to temperature broadening effects.[45] Analysis of the
effect of finite T in the non-interacting limit suggests
κ ∼ 0.04 as an appropriate threshold. See Supplemental
Materials.

Fig. 4 suggests that for ∆ = 0.5, the system becomes
incompressible at Uc ∼ 4.0 ± 0.5. Increasing the level
of randomness, the gap develops at a lower interaction
strength, Uc ∼ 3.8 ± 0.5 and 3.0 ± 0.5 at ∆ = 1.0
and 2.0 respectively. We are not able to pin-point the
exact location where the gap opens at each disorder
strength due to the coarse-grained data. Nonetheless,
an estimated phase boundary separating Anderson-like
(gapless) and Mott-like (gapped) insulators is presented
in the phase diagram Fig. 1.

We now consider the effect of randomness on magnetic
order. Fig. 5 summarizes finite-size scaling studies of the
AF structure factor on lattices up to 2L2 = 450 sites. For
U ≤ 2.0, where there is no AF order in the clean limit, the
disorder has essentially no effect (cf. Figs. 5(a) and 5(b)).
At U > 4.5, disorder suppresses the long-range AF order
and increases the critical interaction strength. A likely
mechanism for the suppression is the tendency towards
singlet formation on pairs of sites with large tij[46]. Based
on the extrapolated SAF /Nc in the thermodynamic limit,
a estimated phase boundary for the onset of AF magnetic
order is shown in Fig. 1.

Summary — We have studied electronic and magnetic
properties of disordered Hubbard model on the
honeycomb lattice using the DQMC algorithm. In the
absence of disorder, we have verified our results are
consistent with previous (higher resolution) findings.[27]

In the U = 0 limit, the semi-metallic phase is
driven into a gapless Anderson insulating state by
randomness. Switching on the local Coulomb repulsion
U , the critical disorder strength for the metal-insulator
transition decreases, suggesting that the presence of
both disorder and interactions becomes more effective
in localizing electrons. At U > 4.5, electrons are
localized by strong Coulomb correlations in the absence
of disorder: the magnetic transition and metal-insulator
transition coincide in the clean limit. Our key finding
is that adding random disorder reduces the threshold
U required for insulating behavior, but increases the
U required for AF. Thus the magnetic and metal-
insulator transitions no longer coincide, and a disordered
insulating phase intervenes. Furthermore, within this
disordered insulator, there is a transition from an
Anderson-like gapless state to a Mott-like gapped phase.

Already, certain unique features of the interplay
of disorder and interactions in models with a Dirac
dispersion have been noted, including the possibility that
disorder might enhance superconductivity for attractive
interactions[47]. Our work expands this understanding
to repulsive interactions, where similar anomalous effects
such as an enhancement of Néel temperature by
randomness are known[48] for conventional geometries.
Moreover, the reduced critical coupling strength for the
metal-insulating transition in the presence of disorder
might be relevant for practical applications of honeycomb
structural materials such as a low power Mott transistor.
Recently, it is shown[49, 50] that strongly coupled
electron-hole plasma in graphene (dubbed the Dirac
fluid) near the charge neutrality point violate the Fermi
liquid theory. While our work does not address the
issue directly, they are the first step to future numerical
studis of non-Fermi liquid behaviors in Dirac fluids.
Finally, we note that there is a renewal of interest in
disorder effects in correlated systems using optical lattice
experiments. These ultracold atomic systems allow
precise control over disorder and coupling parameters,
making direct comparisons between experimental data
and theoretical predictions feasible.[51] Results reported
in this work could be used as guidance in future cold
atom experiments.
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M. Schreiber, I. Bloch, and U. Schneider, Phys. Rev.
Lett. 116, 140401 (2016).

[52] D. J. Scalapino, S. R. White, and S. C. Zhang, Phys.
Rev. B 47, 7995 (1993).

[53] R. K. Pathria, “Statistical mechanics,” (Butterworth-
Heineann, Oxford, 1996) Chap. 8, pp. 197–199, 2nd ed.

http://journals.aps.org/pr/abstract/10.1103/PhysRev.109.1492
http://www.worldscientific.com/doi/abs/10.1142/S0217979210064575
http://www.worldscientific.com/doi/abs/10.1142/S0217979210064575
http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031214-014726
http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031214-014726
http://www.sciencedirect.com/science/article/pii/S0003491605002630
http://www.sciencedirect.com/science/article/pii/S0003491605002630
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.3045
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.3045
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.83.1057
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.83.1057
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.156401
http://www.nature.com/nphys/journal/v6/n5/abs/nphys1606.html
http://science.sciencemag.org/content/344/6181/280
http://arxiv.org/abs/1206.1332
http://arxiv.org/abs/1206.1332
http://science.sciencemag.org/content/344/6181/280
http://science.sciencemag.org/content/344/6181/280
http://science.sciencemag.org/content/344/6181/280
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.174511
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.37.325
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.40.546
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.66.3144
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.67.2307
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.67.2307
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.49.12115
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.75.1356
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.75.1356
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.53.2691
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.53.2691
https://journals.aps.org/prb/abstract/10.1103/PhysRevLett.76.2937
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.55.R11981
https://journals.aps.org/prb/abstract/10.1103/PhysRevLett.79.3502
https://journals.aps.org/prb/abstract/10.1103/PhysRevLett.103.140402
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.80.214519
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.105303
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.105303
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.40.506
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.40.506
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.72.085123
http://www.nature.com/articles/srep00992
http://journals.aps.org/prx/abstract/10.1103/PhysRevX.3.031010
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.045111
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.4610
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.4610
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.75.312
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.75.312
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.54.R3756
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.54.R3756
http://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.011029
http://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.011029
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.236801
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.236801
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.33.3257
http://journals.jps.jp/doi/abs/10.1143/JPSJ.67.2421?journalCode=jpsj&quick LinkVolume=67&quickLinkPage=2421&selectedTab=citation&volume=67
http://journals.jps.jp/doi/abs/10.1143/JPSJ.67.2421?journalCode=jpsj&quick LinkVolume=67&quickLinkPage=2421&selectedTab=citation&volume=67
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.89.266603
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.89.266603
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.65.245420
http://journals.jps.jp/doi/abs/10.1143/JPSJ.71.1318?journalCode=jpsj&quick LinkVolume=71&quickLinkPage=1318&selectedTab=citation&volume=71
http://journals.jps.jp/doi/abs/10.1143/JPSJ.71.1318?journalCode=jpsj&quick LinkVolume=71&quickLinkPage=1318&selectedTab=citation&volume=71
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.036802
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.196804
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.196804
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.146805
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.146805
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.50.191
http://www.worldscientific.com/doi/abs/10.1142/S0217979210064496
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.240402
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.240402
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.76.144513
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.64.184402
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.094516
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.51.10411
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.51.10411
http://science.sciencemag.org/content/351/6277/1058
http://science.sciencemag.org/content/351/6277/1058
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.075426
http://www.nature.com/nphys/journal/v6/n9/abs/nphys1726.html
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.083002
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.083002
http://science.sciencemag.org/content/349/6250/842.full.pdf+html
http://science.sciencemag.org/content/349/6250/842.full.pdf+html
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.140401
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.140401
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.47.7995
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.47.7995

	Localization of interacting Dirac fermions
	Abstract
	References


