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We report the first observation of lasing topological edge-states in a 1D Su-Schrieffer-Heeger ac-
tive array of microring resonators. We show that the judicious use of non-Hermiticity can promote
single edge-mode lasing in such arrays. Our experimental and theoretical results demonstrate that in
the presence of chiral-time (CT ) symmetry, this non-Hermitian topological structure can experience
phase transitions that are dictated by a complex geometric phase. Our work may pave the way to-
wards understanding the fundamental aspects associated with the interplay among non-Hermiticity,
nonlinearity, and topology in active systems.

In condensed matter physics, topological insulators
(TI) represent new forms of matter wherein electron con-
duction is prohibited in the bulk, while it is allowed along
the surface by means of edge states [1–4]. These gap-
less edge states emerge whenever a TI is terminated ei-
ther on vacuum or is interfaced with an ordinary insu-
lator - a principle known as bulk-edge correspondence.
Consequently, topological edge states are robust against
local perturbations, since their characteristics are dic-
tated by their corresponding bulk environment. This is
in sharp contrast to conventional defect states that orig-
inate from imperfections, and are by nature sensitive to
perturbations. It is this robustness that has incited a
flurry of activities aimed to understand and harness the
ramifications of topology in many and diverse fields [5–
17]. In optics, the newly emerging field of topological
photonics aims to fundamentally explore and technolog-
ically utilize the effect of topological protection in order
to demonstrate novel devices and functionalities. As in-
dicated in recent studies, the introduction of topology
in photonics can lead to a host of intriguing and unex-
pected results. These include unidirectional light trans-
port, backscattered-free light propagation as well as im-
munity to structural imperfections [6]. In photonics, the
availability of gain and loss (non-Hermiticity) and the
possibility of utilizing optical nonlinearities [18–26] - a
set of attributes not present in solid-state materials - can
provide an even richer ground for topological physics. In
this respect, one may ask a number of fundamental ques-
tions. For example, can a system lase in a topological
edge mode and what dictates the characteristics of such
a laser? Can nonlinearity and non-Hermiticity impede or
assist lasing topological edge-states and in that case how
do topological attributes depend on the gain/loss levels?

In this Letter, we theoretically and experimentally in-
vestigate the lasing properties of Su-Schrieffer-Heeger
(SSH) active microring resonator arrays. Such arrays
present an archetypical example of one-dimensional dis-
crete lattices that are known to be topologically non-
trivial [27]. Thus far, this class of SSH structures has

been employed to experimentally probe topological phase
transitions [28, 29] and to demonstrate PT -symmetric
topologically protected bound states in passive systems
such as fused silica coupled waveguide arrays [30]. On
the contrary, the optical SSH structures considered in
this study are both nonlinear and highly non-Hermitian.
We demonstrate that the conventional chiral C-symmetry
associated with the passive SSH system no longer per-
sists in the presence of non-Hermiticity. Instead, by ju-
diciously engineering the gain and loss profile in the SSH
laser array in a way that respects PT -symmetry, the en-
suing Hamiltonian now possesses CT -symmetry, a neces-
sary ingredient in this case for robust topologically pro-
tected lasing edge states. Our analysis reveals three dif-
ferent phases that depend on the gain levels involved and
the coupling strengths. We find that this rich nonlinear
and non-Hermitian system displays a broad range of be-
haviors, starting from single edge-mode lasing and even-
tually ending into multimode emission within the bulk of
the array. The observed intensity mode profiles and spec-
tra emitted by this topological laser arrangement are in
good agreement with theoretical predictions that account
for carrier dynamics, saturable gain, and laser mode com-
petition.

For our study, we fabricate an active SSH ar-
ray consisting of 16 identical coupled microring res-
onators fabricated on InGaAsP quantum wells. The
gain-medium consists of six vertically stacked quan-
tum wells, each composed of a 10nm thick well
(Inx=0.56Ga1−xAsy=0.93P1−y) sandwiched between two
20nm thick barrier layers (Inx=0.74Ga1−xAsy=0.57P1−y),
with an overall height of 200nm, which is capped with
a 10nm thick layer of InP, as depicted in Fig. 1 (a).
The coupling strengths in this SSH structure alternate
between κ1 ≈ 8 × 1010s−1 and κ2 ≈ 14 × 1010s−1, as
obtained when the distance between successive rings is
200nm and 150nm, respectively. The resulting lattice
shown in Fig. 1 (b) involves a nontrivial termination, ca-
pable of supporting edge modes. Figure 1 (c) shows a mi-
croscope image of a fabricated SSH structure (eight unit
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cells), with each ring being weakly coupled to a waveg-
uide that happens to be equipped with two out-coupling
gratings - necessary to interrogate the array. Within the
tight-binding formalism, the dynamics in this SSH con-
figuration can be described by the following Hamiltonian:

A B A B A

FIG. 1. (a) InGaAsP multilayer quantum well structure used
in the microrings, (b) a schematic of the SSH microring laser
array, and (c) a microscope image of the fabricated structure
with 16 elements. Insets show scanning electron microscope
images of the grating at the end of the out-coupling waveg-
uides, and the coupling region between two microrings.
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where ĉA†
n and ĉB†

n denote photon creation operators at
site n in the sublattices A and B of this structure, while
ǫA and ǫB represent the complex on-site eigenfrequencies
(potentials) of the corresponding active rings. Again, κ1
and κ2 are the intra-cell and inter-cell coupling coeffi-
cients, respectively. In momentum space representation,
the Bloch mode Hamiltonian can be obtained through a
Fourier transform, i.e.:

H0(k) =

(

ǫA κ1 + κ2e
−ik

κ1 + κ2e
ik ǫB

)

. (2)

If the array is Hermitian and is composed of identical
rings (ǫA = ǫB = 0), the Hamiltonian of Eq. (2) anti-
commutes with the chiral operator C = σz. Due to
the chiral symmetry the eigenvalues are symmetrically
distributed around zero, with the two zero-energy edge
states being located at the ends of the Brillouin zone
k = ±π (Fig. 2 (a)). The field of the edge modes expo-
nentially decays into the bulk (see Fig. 2 (a)). Note that
the field distribution of these edge modes is π-staggered
on the sublattices A and B. On the other hand, if the

SSH structure is active, then the on-site potentials are
now purely imaginary, i.e. ǫA = −igA and ǫB = −igB.
In this latter case, it is easy to show that the structure
no longer possesses C-symmetry, i.e. CH0C

−1 6= −H0. In
our experimental realization (Fig. 1 (b)), the parameters
gA and gB are dictated by the linear gain coefficients as-
sociated with the two sublattices A and B, as induced by
differential pumping. In general, the dynamics of such an
active SSH lattice are described by [31, 32]:
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Here, EA
n and EB

n denote the electric modal field am-
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FIG. 2. Eigenvalue diagrams of an infinite (a)Hermitian and
uniformly pumped (g = 0 and g 6= 0) and (b) PT symmetric
SSH lattice, where the eigenvalues of the edge modes corre-
sponding to a finite, nontrivial termination of the structure
are also represented by dots at the both ends of the Brillouin
zone. The field profiles of the edge states are also depicted in
the right and left insets.

plitudes in sublattices A and B, γ is inversely propor-
tional to the photon lifetime in each microring cavity,
and NA

n and NB
n represent the carrier population den-

sities normalized with respect to the transparency value
N0. In addition, αH is the linewidth enhancement fac-
tor, σ = ΓvgaN0 is proportional to the unsaturated loss
in the absence of pumping, Γ is the confinement factor,
a is the gain proportionality factor, and vg = c/ng de-
notes the group velocity within the cavity. The rest of
the variables appearing in Eqs. (3) are defined in [33].
We first consider the simplest possible case, i.e. when

the pumping is uniform gA = gB = g. The linear band
structure of this SSH laser system under this condition
is also depicted in Fig. 2 (a). The optical field distribu-
tions corresponding to the two edge states are identical
to those in the Hermitian case. It is evident that in this
scenario, the eigenvalues are no longer symmetrically dis-
tributed around the zero level, instead, they all shift by
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the same amount −ig (in their imaginary part), corre-
sponding to an equal amount of gain g for all supermodes
involved (red line in the dispersion curve of Fig. 2 (a)).
This situation drastically changes once PT -symmetry is
introduced, i.e. gA = −gB = g. In this regime, the
Hamiltonian of Eq. (2) now takes the form:

H0(k) =

(

−ig ρ
ρ∗ +ig

)

, (4)

where ρ = κ1 + κ2e
−ik. As previously indicated, this

Hamiltonian does not respect the chiral C-symmetry. In-
stead, H0 satisfies:

CTPSH0T
−1
PS C−1 = H0, (5)

where the pseudo-spin time reversal operator TPS is here
defined as TPS = iσyK, with K denoting complex con-
jugation. If |ψ〉 is an eigenstate of H0 (H0 |ψ〉 = ǫ |ψ〉),
then CTPS |ψ〉 is also an eigenstate of H0, with eigen-
value ǫ∗. While PT -symmetry is imposed in real space,
the CT operator acts in the momentum domain. Figure
2 (b) shows the eigenvalues of this CT -symmetric Hamil-
tonian when g < |κ2 − κ1|. The right and left sides of
this figure display the field amplitudes of the edge states
corresponding to the two imaginary eigenvalues marked
in the plot (red dots at the edges of the dispersion dia-
grams). Evidently, the field distributions of these states
only occupy one of the sublattices (A or B), and alter-
nate in sign. As a result, one of these modes is expected
to experience gain, while the other one an equal amount
of loss. Note that under PT -symmetric conditions, all
the bulk modes remain neutral (neither gain nor loss).
Figure 3 (a) shows the steady-state intensity distri-

bution as obtained from simulations (Eqs. (3)), for a
16-element SSH laser system when uniformly pumped at
RA,B = 1.06/τr. In these simulations, we assume that
αH = 4, τr = 4ns, and σ = 6 × 1011s−1. The dimer-
ization ν = κ2/κ1 for this array is ν = 2. The resulting
lasing profile is a complex mixture of all the supermodes
(including the edge states) supported in this laser array.
This is because all modes experience the same gain. Nev-
ertheless, the emission wavelength in the array greatly
depends on the site number (Fig. 3 (c)). Our theoreti-
cal analysis suggests that in a large array, the edge state
will lase at the resonance frequency of each ring (ω0). In
other words, the normalized frequency shift for the edge
mode is zero (Ω/κ1 = 0). This is because the real part
of the eigenvalue of the edge mode remains the same if
the array is uniformly pumped. Conversely, the spec-
trum emanating from rings in the bulk (bulk modes) will
have a considerably more complex structure because of
mode competition effects. On the other hand, Fig. 3
(b) shows the expected intensity distribution under PT -
symmetric conditions after numerically solving Eqs. (3)
- starting from noise. In this case, the two sections are
pumped at RA = 1.06/τr while RB = 1.03/τr, thus set-
ting sublattice A above lasing threshold, whereas B is

kept below threshold. In this regime, our simulations
show that only one of the edge modes (the one enjoy-
ing gain) is favored and hence lases, while all the bulk
modes are suppressed. In direct contrast to the results
presented in Fig. 3 (a), PT -symmetry now promotes
only one edge state. Consequently, the spectrum emit-
ted from the structure happens to be close to the ring
resonance ω0 and is single-moded (Fig. 3 (d)).

FIG. 3. Theoretically predicted steady-state lasing profiles
for (a) uniformly pumped and (b) PT -symmetric SSH lattice.
Panels (c) and (d) depict the power spectra corresponding to
the edge mode and bulk modes as obtained from different
locations in the array.

The dynamics of this PT -symmetric SSH laser sys-
tem can be theoretically predicted by considering the
linear complex band structure associated with the non-
Hermitian Hamiltonian of Eq. (4), which is given by:

ǫ(k) = ±κ1
√

1 + ν2 + 2νcos(k)− η2, (6)

where η = g/κ1 represents a normalized gain/loss. This
equation reveals three distinct phases, presented in Figs.
4 (a)-(c). If the SSH system is pumped or operated in
the range of 0 < η < ν − 1 (denoted as phase I), only
one edge state is expected to lase in a stable manner. In
this domain, under steady-state conditions, the structure
is single-moded and the intensity profile across the array
varies exponentially with the site number (inset of Fig. 4
(a)). As the gain in the topological system increases, i.e.
when ν − 1 < η < ν + 1, the SSH structure enters phase
II, where some of the bulk modes start to acquire com-
plex eigenvalues (after entering the PT -symmetry broken
phase), resulting in a multimode operation (inset of Fig.
4 (b)). Note that in phase II the intensity profile across
the array is asymmetrically one-sided, biased towards the
edge mode. Finally, for even higher values of gain/loss
contrast, i.e. η > ν+1, the array crosses another thresh-
old and moves into phase III, as also corroborated by an-
alyzing Eqs. (3). At this point, all of the bulk modes of
the active lattice break their PT -symmetry, and as such,
they start to lase - all competing for the gain. Unlike
what happens in the first two phases, after crossing into
phase III, the edge state is now obscured by bulk modes.
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This in turn results into a more uniform intensity pro-
file, as shown in the inset of Fig. 4 (c). In other words,
in this range, the pumped sublattice is uniformly lasing,
while its lossy counterpart remains dark. This can be
explained by the fact that the carrier-induced detuning
between adjacent resonators, which is by nature a nonlin-
ear effect, significantly suppresses the coupling between
neighboring units. The theoretically expected spectra
corresponding to these three phases can be found in [33].
Our simulations also suggest that the boundary between
phase I and II can be nonlinearly modified because of
the linewidth enhancement factor αH , something that is
also revealed in our experiments. Moreover, because of
nonlinear αH -induced index changes, the lasing frequen-
cies associated with the modes of this SSH system will
be shifted with respect to that of a cold cavity. However,
as indicated by the theoretically predicted spectra [33],
this lasing frequency-shift is expected to be considerably
higher for bulk modes as opposed to that of a lasing edge-
state. This behavior can be explained by the fact that the
nonlinear shift in frequency is essentially determined by
the lasing threshold associated with a specific eigenstate
(Eqs. (3)). This is consistent with the fact that PT -
symmetry breaking threshold for the lasing edge state is
lower than that of bulk modes.

Interestingly, the onset of these three phases is also
manifested in the complex Berry phase associated with
this SSH laser array [33, 34]. Figure 4 (d) shows the Berry
phase associated with the lower band Φ− as a function
of the normalized gain η when ν = 2. This figure reveals
that the geometric phase undergoes phase transitions at
exactly the same boundaries (ν ± 1), as also previously
indicated by Eq. (6). Note that the global Berry phase
[34] defined as the sum of Φ+ and Φ− associated with the
upper and lower bands, is independent of the gain and is
nonzero in all the three phases (see section 4 of [33]).

To verify these predictions we conducted a series of
experiments with a 16 microring resonator SSH array,
each having a radius of 5µm. To enforce single-transverse
mode operation at 1.59µm, the width of the resonators
was set to 500nm. In order to reduce the lasing threshold,
the microrings were surrounded by a low-index dielectric,
entailing a higher confinement. As previously indicated,
each ring was individually interrogated (intensity-wise
and spectrally) through an extraction bus waveguide, fea-
turing a pair of grating out-couplers (Fig. 1 (c)). To
introduce PT -symmetry, the microresonators were alter-
nately pumped at 1.06µm by using a titanium amplitude
mask. Figure 5 shows the measured ring intensity and
spectra using an InGaAs camera. In particular, (a), (b),
and (c) present the data corresponding to phase I, II,
and III. At a pump intensity of I = 26kW/cm2 only the
edge mode lases (Fig. 5 (a)). Once the first phase tran-
sition occurs, other modes start competing for the gain
(Fig. 5 (b) at I = 41kW/cm2) and eventually the edge
mode is obscured (Fig. 5 (c) at I = 83kW/cm2). The
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FIG. 4. Complex band structure of the infinite PT-symmetric
SSH model, where (a), (b) and (c) correspond to the three
phases I, II and III, respectively (the eigenvalues of the edge
modes corresponding to a finite, nontrivial termination of the
structure are depicted by dots at both ends of the Brillouin
zone). The insets show the simulated intensity distributions
corresponding to these three distinct regimes, as obtained
from Eqs. (3). Panel (d) presents the complex Berry phase
Φ− as a function of the normalized gain coefficient η.
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FIG. 5. The left panels depict the measured intensity dis-
tributions in the 16-element SSH array at every site. The
middle panels show raw data from the extraction ports, while
the right panels the corresponding power spectra. Each of
the successive rows (a), (b), and (c) are progressively associ-
ated with phase I, II, and III observations. The inset in (a)
provides the exponential intensity distribution of the lasing
edge-state in a log-linear scale.

emergence of these three phases is also evident in their
spectra. While the spectrum of the edge mode is single-
moded, once the first phase transition occurs, bulk modes
also appear, with upshifted frequencies as expected from
theory [33]. Figure 5 (a) indicates that the exponential
intensity decay of the edge mode (log-linear inset) is in
good agreement with theory (∝ (κ1

κ2

)2n) when ν = 1.7. In
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all our experiments we found that gain saturation plays
a prominent role in stabilizing the lasing edge mode at
different pumping levels. Moreover, the same effects tend
to shift the frequency of the bulk modes as a function of
the pump power. Yet, the central frequency of the edge
mode experiences a negligible shift, thus manifesting its
robustness (see section 1 of [33]).
In conclusion, we have observed for the first time lasing

topological edge modes in an active SSH microring ar-
ray. Under chiral-time symmetry, the transitions of this
PT -symmetric non-Hermitian system can be described
through both the complex band structure and the corre-
sponding complex Berry phase. The effects of gain satu-
ration and carrier dynamics on the edge-mode were also
systematically investigated.
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