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Time crystals, a phase showing spontaneous breaking of time-translation symmetry, has been an intriguing
subject for systems far away from equilibrium. Recent experiments found such a phase both in the presence
and absence of localization, while in theories localization by disorder is usually assumed a priori. In this work,
we point out that time crystals can generally exist in systems without disorder. A series of clean quasi-one-
dimensional models under Floquet driving are proposed to demonstrate this unexpected result in principle.
Robust time crystalline orders are found in the strongly interacting regime along with the emergent integrals
of motion in the dynamical system, which can be characterized by level statistics and the out-of-time-ordered
correlators. We propose two cold atom experimental schemes to realize the clean Floquet time crystals, one by
making use of dipolar gases and another by synthetic dimensions.

Introduction — The recent realizations of Floquet (or discrete)
time crystals have drawn much attention [1–10]. A common
feature of these systems is that certain physical observable Ô
shows a rigid reduced periodicity 〈Ô〉(t + nT ) = 〈Ô〉(t), n ≥ 2,
compared with the Floquet driving period T of the Hamilto-
nian H(t + T ) = H(t). As originally conceptualized in Ref.
[11–13], “time-crystals” are regarded as a new addition to the
concept of spontaneous symmetry breaking, for the temporal
translation symmetry missing for nearly a century.

Early discussions of time crystals [12–15] concluded with
a no-go theorem [16] forbidding such a phase in equilibrium.
Consequently, a new generation of periodically-driven models
were proposed [1–5], with results that challenge our under-
standing of dynamical interacting systems. Unlike the usual
quasi-static examples such as charge pumping [17–19] or lat-
tice shaking [20, 21], the Floquet time crystal lives in the
regime with large driving amplitude and resonant frequencies,
surprisingly robust against chaotic behaviors, such as in turbu-
lence [22–24]. It is therefore natural to ask what serves as the
stabilizer against butterfly effects and heating.

A key strategy in recent theories is to employ non-ergodic
systems to resist trivialization of dynamics due to thermal-
ization [2–5]. Besides the fine-tuned integrable Hamiltonians,
many-body localized (MBL) systems consist of the most well-
studied examples showing robust non-ergodicity. As such, it
is assumed a priori in most theories that stable time-crystal
phase can only occur in the MBL regime with strong spatial
disorder [3, 5, 9]. However, a recent experiment on nitrogen-
vacancy (NV) centers performed by Choi et. al. demonstrated
an alternative possibility [10], where time crystals formed re-
gardless of the delocalization by the three-dimensional spin-
dipolar interactions. It was also emphasized that the system
is not in a pre-thermal regime [6, 10]. The experimental
breakthrough indicates the tantalizing possibility of seeking
for stable time-crystals without the aid of localization, and the
theoretical need to understand the time-crystal phase in this
regime.

The purpose of this work is to demonstrate through a simple

model that stable time crystals can exist in the strongly inter-
acting regime completely without disorder. These Floquet-
ladders we propose represent a large class of models includ-
ing, as special cases, the quenched Ising chain [2–5] dis-
cussed before. Within certain parameter regions, the persist-
ing double-periodic oscillation modulates with time spans that
scale exponentially with system sizes. Unlike the “MBL time
crystal” [2–5] which inherits integrability from a static MBL-
Hamiltonian, these “clean time crystals” exhibit emergent in-
tegrability through dynamics and is a property of the Floquet
evolution operator. Such a character is illustrated by the level
statistics and out-of-time-ordered-correlators (OTOC) in dif-
ferent parameter regimes. Moreover, these phenomena even
survive when the interactions are modified to those that can
be readily realized in current cold atom experiments. The
generality of our results clearly suggests an exciting field of
studying time crystals in various clean systems with more in-
triguing properties.

Definition of time crystal—Periodic motions exist widely
in dynamical systems, ranging from Rabi oscillations [25] to
Josephson effects [26] and Zitterbewegung [27]. More gener-
ally, if one picks an arbitrary initial state, the unitary time-
evolution e−iHt/~ =

∑
n |n〉e−iEnt/~〈n| may fairly endow the

evolved state certain oscillations. Therefore, restrictions must
be applied to screen out some periodic motions that are al-
ready well-understood without involving a new name. Here
we give a phenomenological definition of non-equilibrium
time crystal by selecting oscillations that are emergent from
many-body dynamics. Specifically, there should exist a phys-
ical observable Ô and a class of initial states |ψ〉, such that

f (t) = lim
L→∞
〈ψ|Ô(t)|ψ〉 (1)

satisfy all of the three conditions: (A) Time-translation-
symmetry-breaking, which means f (t + T ) , f (t) while the
Hamiltonian has H(t + T ) = H(t); (B) Rigidity: f (t) shows
a fixed oscillation frequency without fine-tuned Hamiltonian
parameters. (C) Persistence: the non-trivial oscillation with
fixed frequency must persist to infinitely-long time when first
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taking system size L to the thermodynamic limit.
The above definition is inspired by making analogy to the

familiar charge-density-wave (CDW). Condition (A) rules out
oscillations trivially following the external drive, which func-
tions as “temporal lattice potentials”. The rigidity of fre-
quency in condition (B) requires many-body origins, resem-
bling the rigidity of wave-vector for density-modulation in
CDW given by Fermi-surface nesting [28]. Condition (C) is
added to distinguish a stable time crystal from a quasi-stable,
i.e. a pre-thermal one [6], or accidental oscillations lasting for
short periods. See also Ref. [2–5, 7] emphasizing different
aspects of the definitions respectively.
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FIG. 1. (a) Schematic plot for the Floquet-ladder. Green and
red lines indicate the inter-chain (Eq. (2)) and intra-chain couplings
(Eq. (3)) respectively, which alternate during the binary drive. Blue
dots represent occupied sites. In time crystal regime, density distri-
bution in two chains shows rigid reduced periods 2T . (b) DMRG
result for density polarization P(t) (Eq. (5)) under perturbation ε =

0.12 at stroboscopic time (lines are guides to the eyes). The inter-
action U rigidifies the 2T periodicity, signifying a time-crystal phe-
nomenon. Here the lattice size is L = 80 for each chain, ∆ = 0.1, and
the open boundary condition is used.

Model—We introduce a clean Floquet-ladder model that
turns out to satisfy all of the conditions (A)-(C). The Hamilto-
nian is under binary quench with periodicity T = t1 +t2, where
during

t1 : H1 = −J′
L∑

i=1

(a†i bi + b†i ai),
J′t1
~

=
π

2
+

t1
~
ε, (2)

t2 : H2 = −J
L∑

i=1

(a†i+1ai + b†i+1bi + h.c.)

+U
L∑

i=1

(nA
i nA

i+1 + nB
i nB

i+1) + ∆

L∑
i=1

(nA
i − nB

i ). (3)

See Fig. 1(a) for illustrations. Here a†i (b†i ) creates a particle
in leg-A (-B), nA,B

i = a†i ai (or b†i bi) is the particle number op-
erator, and L is the number of sites in each leg. The evolution
operator at stroboscopic time is

U(nT ) ≡ (UF)n =
(
e−iH2t2/~e−iH1t1~

)n
(4)

where UF is the Floquet operator. The physics is controlled
by dimensionless parameters (εt1,Ut2, Jt2,∆t2)/~, which will
be denoted simply as (ε,U, J,∆) later on. To compare with
previous works using an Ising chain [2–5], we note that for
either spinless fermions or hard-core bosons, our model maps
to two coupled spin-1/2 XXZ chains, and is therefore generi-
cally different (in additional to the lack of disorder) except in
the special limit J = 0 and nA

i + nB
i = 1 [29].

The general characters of our model are as follows. Dy-
namics during t1 resembles single-particle Rabi oscillations
of particles between two chains U1 = e−iH1t1/~, i.e. U†1a†jU1 =

i cos(ε)b†j−sin(ε)a†j , and U†1b†jU1 = i cos(ε)a†j−sin(ε)b†j . Dur-
ing t2, each chain is experiencing nearest-neighbor interac-
tions separately. Define the physical observable as the density
polarization P(t) between two chains,

P(t) =
1
L

∑
i

〈ψ(t)|P̂i|ψ(t)〉, P̂i = a†i ai − b†i bi. (5)

When ε = 0, its periodicity is strictly 2T regardless of H2.
But the period of P(t) is unstable against perturbations ε to the
“Rabi frequency”: see the example of J = U = 0 in Fig. 1(b).
The essential feature is that the dynamics during t2, though
keeping P(t) unchanged, functions as a many-body synchro-
nizer for the 2T periodicity of P(t) and rigidifies the temporal
ordering, as we shall see.
Time crystal signatures—We first seek for solutions in a large
system using density-matrix-renormalization-group (DMRG)
method. Remarkably, time crystal behaviors show up in a
parameter region where the interaction strength U is large
enough (in units of ~/t2) and J/U is small, completely without
disorder or fine-tuning. Two examples with different U = 0.5
and 0.7 for J = 0.2,∆ = 0.1 are presented in Fig. 1(b) for the
system size L = 80 on each chain. Here we consider hard-
core bosons, with the initial state that one of the two legs is
fully occupied, i.e. |ψi〉 =

∏
i a†i |0〉. When the “Rabi fre-

quency” is perturbed by ε = 0.12, the oscillation frequency is
indeed locked to 2T . In supplementary materials we checked
the longer time behavior for a smaller system (L = 20) us-
ing DMRG, which shows that the amplitudes cease to decay
around t/T ∈ [35, 45] and remain almost a constant. We have
also checked that a slight variation of Hamiltonian parameters
or the initial state does not change the 2T periodicity [29].
Thus, conditions (A) (B) are both met.

To further understand the DMRG result and to access late
time behaviors, we next turn to exact diagonalization for the
same initial state with periodic boundary condition. A dra-
matic contrast for systems in and out of the time crystal regime
is found in their finite-size scalings. Starting from isolated
Rabi oscillators H2 = 0, a chaotic regime is reached imme-
diately upon turning on weak interactions U, see Fig. 2(a1).
After an initial period t/T ≈ 10, the many-body physics sets
in and the oscillation becomes non-universal for different L.
Especially, for weak drive J′ = 0.22, the oscillation ampli-
tude decays for larger L, signifying a thermalizaing behavior.
However, for drivings near J′ = π/2 + ε, further increasing in-
teraction strength U leads to a time-crystal regime with fixed
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FIG. 2. (a1)-(a2): Histogram of P(t). In time-crystal regime, P(t) shows an envelope modulation for the amplitude of 2T -periodic oscillations.
The modulation length N0 ≡ t0/T (set by P(t0) decreasing below 10% of the initial value) scales exponentially with system size. (b1)-(b3):
Spectral weight A(ω) for temporal correlation functions, where ω carries the unit 1/T . (We plotted L = 6 for example, and ∆ = 0.1). (c1)-(c3):
Distribution of level spacing ratios (L = 9). It crosses from a GOE type deep in thermalizing regime (c1) to the Poisson limit in time crystal
regime (c3). (d1)-(d2): OTOC with site i = 1 and for different sites j’s. The system size is L = 7 with periodic boundary condition. The initial
state is that one of the two chains is fully occupied.

period-2T oscillations, consistent with DMRG results. For
much later time, the oscillation amplitude shows an overall
envelope shape (Fig. 2(a2) inset). This is because 1) the fi-
nite size effects lead to a tiny deviation of oscillation period
from 2T [4], and 2) the oscillation amplitudes are only plotted
at stroboscopic time [29]. As expected, the envelope’s length
expands exponentially with increasing system size (Fig. 2),
indicating an exact 2T periodic oscillation in the thermody-
namic limit and fulfilling the requirement (C).

The real-time evolution can only be performed up to a fi-
nite time span, and one may wonder whether different char-
acters would show up in the next moment. Thus, as com-
plements, we consider the correlation function in frequency
domain [39]:

C(ω) =

∞∑
N=−∞

e−iωNT

2π

∑
n

〈ωn|P̂(NT )P̂(0)|ωn〉 (6)

=
∑
mn

δ(ω − ωmn)A(ωmn). (7)

Here P̂ = 1
L
∑

i P̂i, UF |ωm〉 = eiωmT |ωm〉, and the spectral func-
tion A(ωmn) = |〈ωm|P̂|ωn〉|

2, ωmn = ωm − ωn. We emphasize
that a direct calculation of spectral function A(ωmn) at arbi-
trary Floquet eigenstates gives us infinite time response char-
acters to arbitrary initial states. The time-crystal phase is high-
lighted by a strong peak of A(ω0) at ω0T = π (Fig. 2(b3)) cor-
responding to 2T periodic motions of P(t), compared with no
or weak peaks in other regimes (Fig. 2(b1)-(b2)). For finite-
size systems, the shrinking deviation |ω0T − π| ∼ e−αL (Fig.
2(b3)) corresponds to the expanding modulation length N0 for
P(t).

Finally, let us summarize the effects of various parame-
ters. Interaction U serves to restore the 2T periodic oscilla-
tion perturbed by ε. The intrachain tunneling J helps restore
the major oscillation frequency to π/T , but also enhances the
amplitude of oscillations at other frequencies. [40] This is
why J/U needs to be small. Finally, ∆ is essentially intro-
duced to break the Hamiltonian integrability at the special
limit J = 0, nA

i + nB
i = 1 [29]. In practice, the system is

very insensitive to the change of ∆ so it is set to a fixed value
throughout this work.

Emergent Floquet-integrability—The coupling between
two chains H1 breaks the integrability of H2, and the linear
combinations αH1 + βH2 should exhibit thermalizing behav-
iors in late-time dynamics if localization is absent. Then, how
do we understand the non-trivial dynamics in the time-crystal
regime? The key point is that when the system is under strong
drive, i.e. the Hamiltonian parameters are no longer much
smaller than Floquet driving frequencies, the Magnus expan-
sion of UF is no longer dominated by the linear terms of static
Hamiltonians, and it turns out that emergent Floquet integra-
bility shows up in the time crystal regime as a property of UF .

We first look at level statistics as a diagnostics of inte-
grability [41]. Arrange the Floquet quasi-energies αm ∈

(0, 2π) : UF |αm〉 = eiαm |αm〉 such that αm+1 > αm, define
the level spacings δm = αm+1 − αm and further the ratios
rn = max(δm, δm+1)/min(δm, δm+1), we typically end up with
two distributions of rn with probability P(rn). In the integrable
limit, such as in MBL systems, we expect a Poisson distribu-
tion P(r) = 2/(1 + r)2 with mean values 〈r〉 ≈ 0.386. Contrar-
ily for thermalizing systems, level repulsion gives a Gaussian
orthogonal ensemble (GOE) for P(r) = (27/4)(r + r2)/(1 + r +
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r2)5/2 with the mean value 〈r〉 ≈ 0.536. From Fig. 2(c1)-(c3),
we see that as one goes from thermalizing regime (c1),(c2) to
deep in the time-crystal regime (c3), the distribution gradually
crosses from the GOE type to the Poisson limit.

To further understand the emergent integral of motion, we
compute the out-of-time-order correlators (OTOC),

F(t) =
〈W†i (t)V†j (0)Wi(t)V j(0)〉

〈W†i (t)Wi(t)〉〈V†V〉
. (8)

Here i, j are site indices, and operators Wi,V j are both chosen
as local density polarization Pi, P j, for reasons specified later.
The average is taken on the state of interest, i.e. the initial
state. Such a correlator has the intriguing property of quanti-
fying quantum chaos, and has been used extensively in recent
works ranging from gravity theories [42] to quantum many-
body systems [43–45]. Several experimental measurements
[46] have also been performed recently.

For isolated Rabi oscillators with H2 = 0, Wi(t) remains
local and commutes with V j,i for all time, giving a constant
|F(t)|. In contrast, OTOC in thermalizing systems should de-
cay to and remain a small value [44]. But if the system pos-
sesses integrals of motion with Wi,V j having large overlap
with them, F(t) would remain close to unity. Accordingly, we
find a sharp contrast of OTOC in and out of the time-crystal
phases, as shown in Fig. 2(d1) and (d2) respectively. The
fact that |F(t)| for Pi remains a large value prompts us to sug-
gest the possible form for emergent Floquet-integral of motion

Iα =
∑

i kαi P̂i: {UF , Îα}+ = O(e−L)
L→∞
−−−−→ 0, when the param-

eters are within time-crystal regime, where P̂i is defined in
Eq. (5). As we do not have localizations, the configuration for
the proportionality coefficients {kαi ∈ C} can be extended in
space.

Two caveats are in order. First, the integrals of motion in
our system may not be complete, as can be reflected in the im-
perfect Poisson distribution in Fig. 2(c3) and an irregular pat-
tern of 〈r〉when system sizes change. This resembles the “par-
tial thermalization” as in mobility edge of MBL [47, 48] or in
quantum disentangled liquids [49–51]. Second, the characters
we show differ from the typical description of “pre-thermal
time crystals” in Ref. [6], where oscillations cease to exist
within fixed time regardless of system size and a longer ther-
malization time relies on weaker interactions. However, our
time crystal phase requires strong interactions, and the tem-
poral correlator in Fig. 2(b3) with a dominant peak clearly
dictates persisting oscillations to infinite time, as one can ver-
ify that the same histogram in the inset of Fig. 2(a2) repeats
with modulation periods N0.

Experimental realization and generality—Since the time-
crystal phase does not rely on the integrability of static Hamil-
tonians, we expect such phases to persist when the models in
Eqs. (2)-(3) are generalized. This is verified by the follow-
ing results for experimental proposals using dipolar gases or
alkaline-earth atoms with spin-SU(N) symmetry.

Dipolar atoms [52–54] or molecules [55–59] have been suc-
cessfully trapped in current cold atom experiments. In our

case, the interaction within each chain can be written as [29]

Vdip =
∑

i j

(
Udip/x3

i j

)
(nA

i nA
j + nB

i nB
j ) (9)

where xi j is the distance between lattice sites i, j along a chain,
and Udip is the interaction strength. This term replaces the
nearest-neighbor interaction proportional to U in Eq. (3). In
particular, one can polarize the dipolar gases along suitable
directions by electric fields such that there is vanishingly small
interaction between two chains [29].

Alternatively, using SU(N) fermions [60, 62–64], one can
engineer an “infinite-ranged” interaction

VSU(N) = U
∑

m<m′
(nA

mnA
m′ + nB

mnB
m′ ), (10)

where the particle at each “site” m interacts with all particles
at other “sites” m′. Here we have exploited the concept of
“synthetic dimensions” [60, 61] where one uses the internal
degree of freedom, i.e. spins m = −S ,−S + 1, . . . , S , to play
the role of different lattice sites. For atom species trapped in
current experiments, the spin S can be 9/2 for 87Sr [62, 63], or
5/2 for 131Yb [60, 64]. The SU(N) particle gains its name as
the interaction (10) among different spin species preserve the
SU(N) symmetry. One therefore only needs a tight double-
well potential accommodating totally N = (2S + 1) particles
in its lowest orbital state if we have half-filling in the initial
state.

We refer the readers to Supplemental Material for details
regarding lattice set-up, quench process, and parameter esti-
mations. Here we present a phase diagram for each of these
two cases in Fig. 3(a) and (b) respectively. We clearly see that
time crystal phases are stabilized by strong interactions.
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U

U
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Time Crystal
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FIG. 3. The experimental set-ups and phase diagrams for fermionic
(a) dipolar gases (J = 0.4U, L→ ∞ extrapolated using L = 4, 5, 6, 7
data [29]) and (b) SU(N) particles (J = 0, L = 10 for 173Yb) with
open boundary conditions. The phase boundary is set to that the
“envelope” height of the oscillation, as shown in the inset of the Fig.
2(a), remains above (or below) 50% for the time crystal (or chaotic)
phase during the first 200 periods.

Conclusion — We have shown through explicit models that a
stable time crystal phase exists without the need for fine tun-
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ing or localization by disorder. The exponential scaling of the
modulation length with respect to system size, together with
the dependence on strong interaction strength, imply that the
clean-Floquet time crystal phase is different from the usual
pre-thermal state [6]. The existence of such a phase is of
genuine dynamical origin, where certain integrals of motion
emerge in the Floquet operator instead of being in the static
Hamiltonian. Therefore, it points to a tantalizing possibil-
ity of using dynamical process to preserve quantum informa-
tion. Finally, as being confirmed in the experimental propos-
als, the time-crystal behavior is not restricted to a specific
model. Thus, it is intriguing to generalize the present dis-
cussions to systems with more complexity in parallel to usual
spatial crystals. Studying time crystals in various clean sys-
tems will surely yield new principles and phenomena of non-
equilibrium nature.
Additional notes—Around the time our preprint appeared on-
line, we noted two independent works for Floquet systems
with 3D dipolar [66] and 1D [67] infinite-ranged interactions,
both of which also found time crystal signatures.
Acknowledgement—The authors wish to thank Vedika Khe-
mani for introducing to us the spectral function diagnostic
method, and V. Khemani, Norman Yao, Dominic Else, Xi-
aopeng Li and Soonwon Choi for comments and suggestions
on thermalization issues. We also would like to thank Shiv-
aji Sondhi, Yi-Zhuang You, Meng Cheng and Joel Moore for
discussions. This work is supported by U.S. ARO (W911NF-
11-1-0230), AFOSR (FA9550-16-1-0006), and MURI-ARO
(W911NF-17-1-0323) (B.H. and W.V.L.), and Overseas Col-
laboration Program of NSF of China (No. 11429402) spon-
sored by Peking University (W. V. L.), and the DFG within
the Cluster of Excellence NIM (Y.-H. W.).

∗ phys.huang.biao@gmail.com
† wvliu@pitt.edu

[1] A. Chandran, S. L. Sondhi, Phys. Rev. B 93, 174305 (2016).
[2] V. Khemani, A. Lazarides, R. Moessner, S.L. Sondhi, Phys.

Rev. Lett. 116, 250401 (2016).
[3] D. V. Else, B. Bauer, C. Nayak, Phys. Rev. Lett. 117, 090402

(2016).
[4] C. W. von Keyserlingk, V. Khemani, S.L. Sondhi, Phys. Rev. B

94, 085112 (2016).
[5] N. Yao, A. C. Potter, I.-D. Potirniche, A. Vishwanath,

arxiv:1608.02589 (2016).
[6] D. V. Else, B. Bauer, C. Nayak, Phys. Rev. X 7, 011026 (2017).
[7] V. Khemani, C. W. von Keyserlingk, S. L. Sondhi, arxiv:

1612.08758.
[8] K. Sacha, Phys. Rev. A 91, 033617 (2015).
[9] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J.

Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A. Vishwanath,
N. Y. Yao, C. Monroe, arxiv: 1609.08684

[10] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F.
Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyser-
lingk, N. Y. Yao, E. Demler, M. D. Lukin, arxiv: 1610.08057
(2016).

[11] A. Shapere and F. Wilczek, Phys. Rev. Lett. 109, 160402

(2012).
[12] F. Wilczek, Phys. Rev. Lett. 109, 160401 (2012).
[13] F. Wilczek, Phys. Rev. Lett. 111, 250402 (2013).
[14] T. Li, Z.-X. Gong, Z.-Q. Yin, H. T. Quan, X. Yin, P. Zhang, L.-

M. Duan, and X. Zhang, Phys. Rev. Lett. 109, 163001 (2012).
[15] P. Bruno, Phys. Rev. Lett. 110, 118901 (2013). P. Bruno, Phys.

Rev. Lett. 111, 029301 (2013). P. Bruno, Phys. Rev. Lett. 111,
070402 (2013).

[16] H. Watanabe, M. Oshikawa, Phys. Rev. Lett. 114, 251603
(2015).

[17] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
[18] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L.

Wang, M. Troyer and Y. Takahashi, Nature Phys. 12, 296
(2016).

[19] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger and I.
Bloch, Nature Phys. 12, 350 (2016).

[20] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif and T. Esslinger, Nature 515, 237 (2014).

[21] P. Hauke, O. Tieleman, A. Celi, C. Ölschläger, J. Simonet,
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