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We argue that the quenched ultracold plasma presents an experimental platform for studying
quantum many-body physics of disordered systems in the long-time and finite energy-density limits.
We consider an experiment that quenches a plasma of nitric oxide to an ultracold system of Rydberg
molecules, ions and electrons that exhibits a long-lived state of arrested relaxation. The qualitative
features of this state fail to conform with classical models. Here, we develop a microscopic quantum
description for the arrested phase based on an effective many-body spin Hamiltonian that includes
both dipole-dipole and van der Waals interactions. This effective model appears to offer a way to
envision the essential quantum disordered non-equilibrium physics of this system.

Introduction.— Quantum mechanics serves well to
describe the discrete low-energy dynamics of isolated
microscopic many-body systems [1]. The macroscopic
world conforms with the laws of Newtonian mechanics
[2]. Quantum statistical mechanics [3] bridges these
realms by treating the quantum mechanical properties of
an ensemble of particles statistically and characterizing
the properties of the system in terms of state properties
(temperature, chemical potential, etc.), in an approach
that implies a complex phase space of trajectories with
ergodic dynamics [4]. However, this is not always the
case, and the macroscopic description of quantum many-
body systems that fail to behave as expected statistically
remains today as a key unsolved problem [5, 6].

Ergodicity, when present in an isolated quantum many-
body system, emerges as the system thermalizes in a
unitary evolution that spreads information among all
the subspaces of the system. The subspaces act as
thermal reservoirs for each other. Most known many-
body systems thermalize in this fashion, obeying the
Eigenstate Thermalization Hypothesis (ETH) [4, 6–10]
which holds that the eigenstates of corresponding many-
body Hamiltonians are thermal.

Exceptions include fine-tuned integrable systems [11],
and the class of so-called many-body localized (MBL)
systems [6, 12], which have attracted intense interest in
recent years. Such systems do not thermalize at finite
energy densities and are therefore non-ergodic. Disorder
in a landscape of interactions preserves memory of the
initial local conditions for infinitely long times. MBL
phases cannot be understood in terms of conventional
quantum statistical mechanics [13, 14].

MBL has been observed in deliberately engineered
experimental systems with ultracold atoms in one and
two-dimensional optical lattices [15–20]. In such cases,
tuning of the lattice parameters allows investigation of
the phase diagram of the system as a function of disorder
strength. However, such ultracold systems suffer from
decoherence, confining localization to short timescales

and low energy densities.
It is important to determine experimentally whether

conditions exist under which MBL can persist for long
times at finite temperatures, and to understand if such a
robust macroscopic quantum many-body state can occur
naturally in an interacting quantum system without
deliberate tuning of experimental parameters. Such a
realization could pave the way to exotic quantum effects,
such as entangled macroscopic objects and localization-
protected quantum order [21, 22], which could have
societal and technological implications [23].

Motivated by these questions, we have explored
the quenched ultracold molecular plasma as an arena
in which to study quantum many-body effects in
the long-time and finite energy-density limits [24,
25]. The ultracold plasma system offers complexity,
as encountered in quantum materials, but evolves
from state-selected initial conditions that allow for a
description in terms of a specific set of atomic and
molecular degrees of freedom.

Experimental work has recently established laboratory
conditions under which a high-density molecular
ultracold plasma evolves from a cold Rydberg gas of nitric
oxide, adiabatically sequesters energy in a reservoir of
global mass transport, and relaxes to form a spatially
correlated, strongly coupled plasma [25, 26]. This
system naturally evolves to form an arrested phase
that has a long lifetime with respect to recombination
and neutral dissociation, and a very slow rate of free
expansion. These volumes exhibit state properties
that are independent of initial quantum state and
density, parameters which critically affect the timescale
of relaxation, suggesting a robust process of self-assembly
that reaches an arrested state, far from conventional
thermal equilibrium.

Departure from classical models suggests localization
in the disposition of energy [25]. In an effort to explain
this state of arrested relaxation, we have developed a
quantum mechanical description of the system in terms
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of power law interacting spin model, which allows for the
possibility of slow dynamics or MBL
Experiment.— Double-resonant pulsed-laser excitation

of nitric oxide entrained in a supersonic molecular beam
forms a characteristic Gaussian ellipsoid volume of state-
selected Rydberg gas that propagates in z with a well-
defined velocity, longitudinal temperature (T|| = 500
mK) transverse temperature (T⊥ < 5 mK) and precisely
known initial density in a range from ρ0 = 1010 to
1012 cm−3 (See Figure 1 and References [27, 28]).

Rydberg molecules in the leading edge of the nearest-
neighbour distance distribution interact to produce NO+

ions and free electrons [29]. Electron-Rydberg collisions
trigger an ionization avalanche on a time scale from
nanoseconds to microseconds depending on initial density
and principal quantum number, n0.

Inelastic collisions heat electrons and the system
proceeds to a quasi-equilibrium of ions, electrons and
high-Rydberg molecules of nitric oxide. This relaxation
and the transient state it produces entirely parallels
the many observations of ultracold plasma evolution in
atomic systems under the conditions of a magneto-optical
trap (MOT) [30].

We see this avalanche unfold directly in sequences
of density-classified selective field ionization spectra
measured as a function of delay after initial formation of
the Rydberg gas [25]. For a moderate ρ0 = 3×1011 cm−3,
the ramp-field signal of the selected Rydberg state, n0

gives way on a 100 ns timescale to form the selective field
ionization (SFI) spectrum of a system in which electrons
bind very weakly to single ions in a narrow distribution
of high Rydberg states or in a quasi-free state held by
the plasma space charge [28].

The peak density of the plasma decays for as
much as 10 µs until it reaches a value of ∼ 4 ×
1010 cm−3, independent of the initially selected n0

and ρ0. Thereafter the number of charged particles
remains constant for at least a millisecond. On
this hydrodynamic timescale, the plasma bifurcates,
disposing substantial energy in the relative velocity of
plasma volumes separating in ±x, the cross-beam axis of
laser propagation [26].

The avalanche to plasma proceeds at a rate predicted
with accuracy by semi-classical coupled rate equations
[25, 28]. This picture also calls for the rapid collisional
relaxation of Rydberg molecules, accompanied by an
increase in electron temperature to 60 K or more.
Bifurcation accounts for a loss of electron energy. But,
the volumes that remain cease to evolve, quenching
instead to form an arrested phase that expands slowly, at
a rate reflecting an initial electron temperature no higher
than a few degrees Kelvin. These volumes show no sign of
loss owing to the fast dissociative recombination of NO+

ions with electrons predicted classically for low Te [31],
or predissociation of NO Rydbergs, well-known to occur
with relaxation in n [32].
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FIG. 1. a) Double-resonant selection of the initial quantum
state of the n0f(2) Rydberg gas. b) Laser-crossed
differentially pumped supersonic molecular beam. c) Selective
field ionization spectrum after 500 ns evolution, showing the
signal of weakly bound electrons combined with a residual
population of 49f(2) Rydberg molecules. After 10 µs, this
population sharpens to signal only high-n Rydbergs and
plasma electrons. d) Integrated electron signal as a function
of evolution time from 0 to 160 µs. Note the onset of the
arrest phase before 10 µs. Timescale compressed by a factor
of two after 80 µs. e) x, y-integrated images recorded after
a flight time of 400 µs with n0 = 40 for initial Rydberg gas
peak densities varying from 2× 1011 to 1× 1012 cm−3. All of
these images exhibit the same peak density, 1× 107 cm−3.

Thus, from the experiment, we learn that 5 µs after
avalanche begins, Rydberg relaxation ceases. We detect
no sign of ion acceleration by hot electrons and the
surviving number of ions and electrons remains constant
for the entire remaining observation period, extending
to as long as 1 ms. With the vast phase space
available to energized electrons and neutral nitrogen and
oxygen atom fragments, this persistent localization of
energy in the electrostatic separation of cold ions and
electrons represents a very significant departure from
a thermalized phase. Current experimental evidence
thus points strongly to energy localization and absence
of thermalization within the accessible time of the
experiment.
Molecular physics of the arrested phase.— Direct

measurements of its electron binding energy together
with its observed expansion rate establish experimentally
that the bifurcated plasma contains only high-Rydberg
molecules (n > 80) and NO+ ions in combination
with cold electrons (initial Te < 5 K) bound by the
space charge. As noted above, semi-classical models
mixing these species in any proportion predict thermal
relaxation, electron heating, expansion and dissipation
on a rapid timescale with very evident consequences
completely unobserved in the experiment. Instead,
beyond an evolution time of 10 µs or less, we find that
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NO +

NO
+

e-

e-

rijdi

dj

FIG. 2. Schematic representation of NO+ core ions, paired
with extravalent electrons to form interacting dipoles di and
dj , separated by rij = ri − rj .

the plasma settles in a state of arrested relaxation of
canonical density and low internal energy manifested by
a slow free expansion.

To describe this apparent state of suppressed
relaxation, we proceed now to develop a formal
representation of the predominant interactions in this
arrested phase. Under the evidently cold, quasi-
neutral conditions of the relaxed plasma, ions pair with
extravalent electrons to form dipoles which interact as
represented schematically in Figure 2.

Assuming an intermolecular spacing that exceeds the
dimensions of individual ion-electron separations, we can
describe the Coulomb interactions represented in Figure
2 in terms of a simple Hamiltonian:

H =
∑
i

(
P2
i

2m
+ hi

)
+
∑
i,j

Vij (1)

where hi describes the local relationship of each electron
with its proximal NO+ core. This local representation
extends to account for the interactions of a bound
extravalent electron with vibrational, rotational and
electronic degrees of freedom of the core, as described,
for example, by Multichannel Quantum Defect Theory
[33]. Each ion-electron pair has momentum, Pi and
Vij ≡ V (ri − rj) describes the potential energy of the
interacting multipoles, represented in Figure 2 to lowest
order as induced dipoles with an interaction defined
by V dd

ij = [di · dj − 3(di · rij)(dj · rij)] /r3
ij , where for

simplicity we average over the anisotropy of the dipole-
dipole interaction.

The plasma also very likely includes ion-electron pairs
of positive total energy. This implies the existence
of local Hamiltonians of much greater complexity that
define quasi-Rydberg bound states with dipole and
higher-order moments formed by the interaction of an
extravalent electron with more than one ion.

Representing the eigenstates of hi by |ei〉, we can write
a reduced Hamiltonian for the pairwise dipole-dipole
interactions [34, 35] in the arrested phase:

Hdd =
∑
i

P2
i

2m
+
∑
i,j

V dd
ij (2)

where we evaluate V dd
ij in the |ei〉 basis.

Note that such a Hamiltonian usually refers to the case
where a narrow bandwidth laser prepares a Rydberg gas
in which a particular set of dipole-dipole interactions
give rise to a small, specific set of coupled states
[36–38]. By contrast, the molecular ultracold plasma
forms spontaneously by processes of avalanche and
quench to populate a great many different states that
evolve spatially without the requirement of light-matter
coherence or reference to a dipole blockade of any kind.

This system relaxes to a quenched regime of ultracold
temperature, from which it expands radially at a
rate of a few meters per second. Dipolar energy
interactions proceed on a much faster timescale [39–
42]. Cross sections for close-coupled collisions are
minuscule by comparison [43]. We can thus assume that
the coupled states defined by dipole-dipole interactions
evolve adiabatically with the motion of ion centres.

This separation of timescales enables us to write an
effective Hamiltonian describing pairwise interactions
that slowly evolve in an instantaneous frame of slowly
moving ions and Rydberg molecules: Heff = P

∑
i,j V

dd
ij ,

where P represents a projector onto the low-energy
degrees of freedom owing to dipole-dipole coupling.
Effective many-body Hamiltonian.— Considering

pairwise dipolar interactions between ion-electron pairs,
we choose a set of basis states

∣∣e1
〉
,
∣∣e2
〉
, ...

∣∣eL〉 that
spans the low-energy regime. The superscript with lower
(higher) integer label refers to the state with larger
(smaller) electron binding energy.

Quenching gives rise to a vast distribution of rare
resonant pair-wise interactions, creating a random
potential landscape. Dipole-dipole interactions in this
dense manifold of basis states cause excitation exchange.
In the disorder potential, these processes are dominated
by low energy-excitations involving L states in number,
where we expect L to be small (from 2 to 4). The most
probable interactions select L-level systems composed of
different basis states from dipole to dipole.

In a limit of dipole-dipole coupling, we can represent
pairwise excitations by spins with energies, εi, and
exchange interactions governed by an XY model
Hamiltonian [28, 44] that describes these interactions in
terms of their effective spin dynamics:

Heff=
∑
i

εiŜ
z
i +

∑
i,j

Jij(Ŝ
+
i Ŝ
−
j + h.c.) (3)

where Ŝ in each case denotes a spin-L operator defined
as Ŝγ = h̄σ̂γ/2, for which σγ is the corresponding spin-L
Pauli matrix that spans the space of the L active levels
and γ = x, y or z. h.c. refers to Hermitian conjugate.

This Hamiltonian reflects both the diagonal and off-
diagonal disorder created by the variation in L-level
system from dipole to dipole. The first term in Heff

describes the diagonal disorder arising from random
contributions to the on-site energy of any particular
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dipole owing to its random local environment. In
spin language,

∑
i εiŜ

z
i represents a Gaussian-distributed

random local field of width W . The representative SFI
spectrum in Figure 1 directly gauges a W of ∼ 500 GHz
for the quenched ultracold plasma.

In the second term, Jij = tij/r
3
ij determines the off-

diagonal disordered amplitudes of the spin flip-flops.
To visualize the associated disorder, recognize that
the second term varies as tij ∝ |di||dj |, where every
interaction selects a different di and dj . Over the present
range of W , a simple pair of dipoles formed by s and p
Rydberg states of the same n couple with a tij of 75
GHz µm3 [45]. Note that tij falls exponentially with the
difference in principal quantum numbers, ∆nij [46].
Induced Ising interactions. In the limit |Jij | <<

W most appropriate to the experiment, sequences of
interactions can add an Ising term that describes a
van der Waals shift of pairs of dipoles [28, 47]. These
processes occur with an amplitude, Uij ≈ J2

ij J̃/W
2,

where J̃ estimates Jij , for an average value of tij at
an average distance separating spins. Uij is inherently
random owing to the randomness in Jij .

Together, these results lead us to a general spin model
with dipole-dipole and van der Waals interactions [28]:

Heff =
∑
i

εiŜ
z
i +

∑
i,j

Jij(Ŝ
+
i Ŝ
−
j + h.c.)

+
∑
i,j

UijŜ
z
i Ŝ

z
j (4)

where Uij = Dij/r
6
ij and Dij = t2ij J̃/W

2.
Discussion: Localization versus glassy behaviour and

slow dynamics.— The complexity of this Hamiltonian
places an exact solution of Eq (4) beyond reach for the
conditions of the plasma. But, we can gauge some likely
properties of such a solution by analogy to published
work on simpler systems.

In the single-spin limit, this Hamiltonian reduces to
the dipolar XY model, which has been studied by locator
expansion methods measuring the probability of resonant
pairs [48, 49]. When Jij scales by a power law α that
equals the dimension d, a single-spin model with diagonal
disorder displays critical behaviour characterized by
extended states with subdiffusive dynamics [48, 49].
Dipolar systems in three dimensions can form extended
states, but yet exhibit non-ergodic behaviour [50].

Off-diagonal disorder in the presence of long-range spin
flip-flop interactions of arbitrary order in one dimension
yields algebraic localization as opposed to exponential
Anderson localization, challenging the generality of the
rule that says systems must delocalize for α ≤ d [51].

The many-body problem is more involved, because the
van der Waals term forms off-diagonal matrix elements
in the resonant pair states [52]. This mechanism couples
distant resonant pairs, transferring energy from one pair

to the other to cause delocalization. A study of power-
law coupled systems predicts that spin flip-flops (order α)
and spin Ising interactions (order β) in an iterated pairs
configuration in which β ≤ α will localize for β/2 > d
[53].

A locator expansion approach developed for β > α
applied to Eq (4) confined to diagonal disorder predicts
a critical dimension, dc = 2 [47]. For the case of d > dc,
this theory holds that a diverging number of resonances
drives delocalization whenever the number of dipoles
exceeds a critical value Nc.

A system described by Eq 4 for the conditions under
which we observe arrest requires a number of dipoles,
Nc = (W/J̃)4 ≈ 3 × 109 to delocalize [28]. This
theoretical threshold deemed necessary for resonance
delocalization exceeds the number of molecules found
experimentally in the quenched ultracold plasma by more
than an order of magnitude [28].

Moreover, as Nandkishore and Sondhi have pointed
out [54], locator expansion arguments might not hold
generally, and low-order power law interactions could
well give rise to MBL in higher dimensions. Their
arguments build on the idea that, in many systems, long-
range interactions can drive a system to form correlated
phases in which emergent short-range interactions can be
well characterized by a locator expansion perturbation
theory approach. In this context, MBL with long-range
interactions in higher dimensions becomes quite possible.

A related study has investigated the behavior of a
three-dimensional dipolar system of nitrogen-vacancy
color centers in diamond in the presence of onsite disorder
[55]. The experimental results point to slow dynamics
consistent with our observations.

The forgoing analysis suggests that the model defined
by Eq (4) ought to exhibit some form of localization or
at least very slow dynamics, since all the terms in the
Hamiltonian are disordered and the terms responsible
for delocalization (Jij and Uij) are expected to be much
smaller than W . This seems to be what we see in the
experiment
Concluding remarks.— This work has argued that

the quenched ultracold plasma forms an arrested
phase possibly governed by quantum disordered non-
equilibrium physics in long-time and finite energy-density
limits. In an effort to support this notion, we have
suggested that the evident and certainly present quantum
dipolar interactions can be usefully described by a
disordered spin model and analyzed its properties in the
limit of strong onsite disorder by analogy with theoretical
results for simpler dipolar systems.

Considering the challenge of scale confronting the
accurate numerical solution of large disordered problems
and the apparent contradiction of available theoretical
results [56–59], experimental systems stand to play an
important role in understanding localization and slow
dynamics. The results presented here call in particular
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for further experimental and theoretical efforts to probe
the physics of localization in long-range interacting
systems of higher dimension. The quenched ultracold
plasma appears to offer a view of large-scale quantum
dynamics in a regime inaccessible to optical lattices and
solid-state materials.

This work was supported by the US Air Force Office
of Scientific Research (Grant No. FA9550-17-1-0343),
together with the Natural Sciences and Engineering
research Council of Canada (NSERC) and the Stewart
Blusson Quantum Matter Institute (SBQMI). JS
gratefully acknowledges support from the Harvard-
Smithsonian Institute for Theoretical Atomic, Molecular
and Optical Physics (ITAMP). We have benefited from
helpful interactions with Rahul Nandkishore, Shivaji
Sondhi and Alexander Burin. We also appreciate
discussions with Joshua Cantin and Roman Krems.

∗ Author to whom correspondence should be addressed.
Electronic mail: edgrant@chem.ubc.ca

[1] J. J. Sakurai, Modern Quantum Mechanics (Pearson
(London), 2014).

[2] H. Goldstein, Classical mechanics (Pearson Education
India, 2011).

[3] M. Kardar, Statistical physics of particles (Cambridge
University Press, 2007).

[4] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol,
Adv. Phys. 65, 239 (2016).

[5] A. Polkovnikov, K. Sengupta, A. Silva, and
M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011).

[6] R. Nandkishore and D. A. Huse, Annu. Rev. Condens.
Matter Phys. 6, 15 (2015).

[7] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[8] H. Tasaki, Phys. Rev. Lett. 80, 1373 (1998).
[9] M. Srednicki, Phys. Rev. E 50, 888 (1994).

[10] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854
(2008).

[11] M. Rigol, Phys. Rev. Lett. 103, 100403 (2009).
[12] D. Basko, I. Aleiner, and B. Altshuler, Ann. Phys. 321,

1126 (2006).
[13] R. Vosk, D. A. Huse, and E. Altman, Phys. Rev. X 5,

031032 (2015).
[14] V. Khemani, S. P. Lim, D. N. Sheng, and D. A. Huse,

Phys. Rev. X 7, 021013 (2017).
[15] S. S. Kondov, W. R. McGehee, W. Xu, and B. DeMarco,

Phys. Rev. Lett. 114, 083002 (2015).
[16] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen,

M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and
I. Bloch, Science 349, 842 (2015).

[17] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess,
P. Hauke, M. Heyl, D. A. Huse, and C. Monroe, Nat.
Phys. 12, 907 (2016).

[18] J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-
Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch,
and C. Gross, Science 352, 1547 (2016).

[19] H. P. Lüschen, P. Bordia, S. S. Hodgman, M. Schreiber,
S. Sarkar, A. J. Daley, M. H. Fischer, E. Altman, I. Bloch,
and U. Schneider, Phys. Rev. X 7, 011034 (2017).

[20] P. Bordia, H. Lüschen, S. Scherg, S. Gopalakrishnan,
M. Knap, U. Schneider, and I. Bloch, Phys. Rev. X 7,
041047 (2017).

[21] D. A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, and
S. L. Sondhi, Phys. Rev. B 88, 014206 (2013).

[22] R. Vasseur, S. A. Parameswaran, and J. E. Moore, Phys
Rev B 91, 140202 (2015).

[23] N. Y. Halpern, C. D. White, S. Gopalakrishnan, and
G. Refael, arXiv:1707.07008 (2017).

[24] J. P. Morrison, C. J. Rennick, J. S. Keller, and E. R.
Grant, Phys. Rev. Lett. 101, 205005 (2008).

[25] R. Haenel, M. Schulz-Weiling, J. Sous, H. Sadeghi,
M. Aghigh, L. Melo, J. Keller, and E. Grant, Phys Rev
A 96, 023613 (2017).

[26] M. Schulz-Weiling and E. R. Grant, J Phys B 49, 064009
(2016).

[27] M. Schulz-Weiling, H. Sadeghi, J. Hung, and E. R.
Grant, J Phys B 49, 193001 (2016).

[28] See Supplemental Material at [URL will be inserted by
publisher] for details including further references [60–79].

[29] H. Sadeghi, A. Kruyen, J. Hung, J. H. Gurian, J. P.
Morrison, M. Schulz-Weiling, N. Saquet, C. J. Rennick,
and E. R. Grant, Phys Rev Lett 112, 075001 (2014).

[30] A. Walz-Flannigan, J. R. Guest, J. H. Choi, and
G. Raithel, Phys Rev A A 69, 063405 (2004).

[31] I. F. Schneider, I. Rabadán, L. Carata, L. Andersen,
A. Suzor-Weiner, and J. Tennyson, J Phys B 33, 4849
(2000).

[32] F. Remacle and M. Vrakking, J Phys Chem A 102, 9507
(1998).

[33] C. H. Greene and C. Jungen, in Adv in Atomic and
Molecular Phys Volume 21 (Elsevier, 1985) pp. 51–121.

[34] M. Baranov, M. Dalmonte, G. Pupillo, and P. Zoller,
Chemical Reviews 112, 5012 (2012).

[35] R. Krems, B. Friedrich, and W. C. Stwalley, Cold
molecules: theory, experiment, applications (CRC press,
2009).

[36] P. Pillet and D. Comparat, J Opt Soc Am B 27, A208
(2010).

[37] R. Löw, H. Weimer, J. Nipper, J. B. Balewski,
B. Butscher, H. P. Büchler, and T. Pfau, J Phys B 45,
113001 (2012).

[38] O. Firstenberg, C. S. Adams, and S. Hofferberth, J Phys
B 49, 152003 (2016).

[39] O. Mülken, A. Blumen, T. Amthor, C. Giese, M. Reetz-
Lamour, and M. Weidemüller, Phys. Rev. Lett. 99,
090601 (2007).

[40] G. Günter, H. Schempp, M. Robert-de Saint-Vincent,
V. Gavryusev, S. Helmrich, C. S. Hofmann, S. Whitlock,
and M. Weidemüller, Science 342, 954 (2013).

[41] D. Barredo, H. Labuhn, S. Ravets, T. Lahaye,
A. Browaeys, and C. S. Adams, Phys. Rev. Lett. 114,
113002 (2015).

[42] J. Zeiher, J.-Y. Choi, A. Rubio-Abadal, T. Pohl, R. van
Bijnen, I. Bloch, and C. Gross, Phys Rev X 7, 041063
(2017).

[43] T. Michaelsen, B. Bastian, E. Carrascosa, J. Meyer, D. H.
Parker, and R. Wester, J Chem Phys 147, 013940 (2017).

[44] S. Sachdev, Quantum phase transitions (Wiley Online
Library, 2007).

[45] H. Zoubi, J. Phys. B 48, 185002 (2015).
[46] N. Samboy, Phys. Rev. A 95, 032702 (2017).
[47] A. L. Burin, Phys. Rev. B 92, 104428 (2015).
[48] P. W. Anderson, Phys. Rev. 109, 1492 (1958).

mailto:edgrant@chem.ubc.ca
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevLett.80.1373
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevLett.103.100403
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1103/PhysRevX.5.031032
http://dx.doi.org/10.1103/PhysRevX.5.031032
http://dx.doi.org/10.1103/PhysRevX.7.021013
http://dx.doi.org/ 10.1103/PhysRevLett.114.083002
http://dx.doi.org/10.1103/PhysRevX.7.011034
http://dx.doi.org/ 10.1103/PhysRevB.88.014206
http://dx.doi.org/ 10.1103/PhysRevLett.99.090601
http://dx.doi.org/ 10.1103/PhysRevLett.99.090601
http://dx.doi.org/10.1126/science.1244843
http://dx.doi.org/10.1103/PhysRevB.92.104428
http://dx.doi.org/10.1103/PhysRev.109.1492


6

[49] L. Levitov, Ann. Phys. 8, 697 (1999).
[50] X. Deng, B. L. Altshuler, G. V. Shlyapnikov, and

L. Santos, Phys. Rev. Lett. 117, 020401 (2016).
[51] X. Deng, V. Kravtsov, G. Shlyapnikov, and L. Santos,

arXiv:1706.04088 (2017).
[52] A. L. Burin, arXiv:cond-mat/0611387 (2006).
[53] N. Y. Yao, C. R. Laumann, S. Gopalakrishnan, M. Knap,

M. Müller, E. A. Demler, and M. D. Lukin, Phys. Rev.
Lett. 113, 243002 (2014).

[54] R. M. Nandkishore and S. Sondhi, Phys Rev X 7, 041021
(2017).

[55] G. Kucsko, S. Choi, J. Choi, P. C. Maurer, H. Sumiya,
S. Onoda, J. Isoya, F. Jelezko, E. Demler, N. Y. Yao,
et al., arXiv:1609.08216 (2016).

[56] A. Chandran, A. Pal, C. R. Laumann, and
A. Scardicchio, Phys. Rev. B 94, 144203 (2016).

[57] S. Inglis and L. Pollet, Phys. Rev. Lett. 117, 120402
(2016).

[58] W. De Roeck and F. Huveneers, Phys. Rev. B 95, 155129
(2017).

[59] V. K. Varma, A. Lerose, F. Pietracaprina, J. Goold, and
A. Scardicchio, Journal of Statistical Mechanics: Theory
and Experiment 2017, 053101 (2017).

[60] T. F. Gallagher, Rydberg Atoms (Cambridge University
Press, 2005).

[61] R. Patel, N. Jones, and H. Fielding, Phys Rev A 76,
043413 (2007).

[62] P. Mansbach and J. Keck, Phys. Rev. 181, 275 (1969).
[63] T. Pohl, D. Vrinceanu, and H. R. Sadeghpour, Phys.

Rev. Lett. 100, 223201 (2008).
[64] M. Bixon and J. Jortner, Journal of Modern Optics 89,

373 (1996).
[65] E. Murgu, J. D. D. Martin, and T. F. Gallagher, J.

Chem. Phys. 115, 7032 (2001).
[66] W. A. Chupka, J Chem Phys 98, 4520 (1993).
[67] N. Saquet, J. P. Morrison, M. Schulz-Weiling, H. Sadeghi,

J. Yiu, C. J. Rennick, and E. R. Grant, J Phys B 44,
184015 (2011).

[68] N. Saquet, J. P. Morrison, and E. Grant, J Phys B 45,
175302 (2012).

[69] D. S. Dorozhkina and V. E. Semenov, Exact solutions for
matter-enhanced neutrino oscillations 81, 2691 (1998).

[70] H. Sadeghi and E. R. Grant, Phys Rev A 86, 052701
(2012).

[71] V. M. Agranovich, Excitations in organic solids, Vol. 142
(Oxford: Oxford University Press, 2009).

[72] J. M. Brown and A. Carrington, Rotational spectroscopy
of diatomic molecules (Cambridge University Press,
2003).

[73] J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao,
P. L. Gould, D. Comparat, and P. Pillet, Phys Rev Lett
108, 023005 (2012).

[74] H. Zoubi, A. Eisfeld, and S. Wüster, Phys. Rev. A 89,
053426 (2014).

[75] J. Z. Imbrie, Physical Review Letters 117, 027201 (2016).
[76] S. Gopalakrishnan, M. Müller, V. Khemani, M. Knap,

E. Demler, and D. A. Huse, Phys. Rev. B 92, 104202
(2015).

[77] S. Gopalakrishnan, K. Agarwal, E. A. Demler, D. A.
Huse, and M. Knap, Phys. Rev. B 93, 134206 (2016).

[78] K. Agarwal, E. Altman, E. Demler, S. Gopalakrishnan,
D. A. Huse, and M. Knap, Ann. Phys. 529, 1600326
(2017), 1600326.

[79] P. Ponte, C. R. Laumann, D. A. Huse, and A. Chandran,
Phil. Trans. R. Soc. A 375, 20160428 (2017).

http://dx.doi.org/ 10.1002/(SICI)1521-3889(199911)8:7/9<697::AID-ANDP697>3.0.CO;2-W
http://dx.doi.org/10.1103/PhysRevLett.117.020401
http://dx.doi.org/ 10.1103/PhysRevLett.113.243002
http://dx.doi.org/ 10.1103/PhysRevLett.113.243002
http://dx.doi.org/10.1103/PhysRevB.94.144203
http://dx.doi.org/10.1103/PhysRevLett.117.120402
http://dx.doi.org/10.1103/PhysRevLett.117.120402
http://dx.doi.org/10.1103/PhysRevB.95.155129
http://dx.doi.org/10.1103/PhysRevB.95.155129
http://dx.doi.org/10.1103/PhysRevA.89.053426
http://dx.doi.org/10.1103/PhysRevA.89.053426
http://dx.doi.org/ 10.1103/PhysRevB.92.104202
http://dx.doi.org/ 10.1103/PhysRevB.92.104202
http://dx.doi.org/ 10.1103/PhysRevB.93.134206
http://dx.doi.org/ 10.1002/andp.201600326
http://dx.doi.org/ 10.1002/andp.201600326

	Possible many-body localization in a long-lived finite-temperature ultracold quasi-neutral molecular plasma
	Abstract
	Acknowledgments
	References


