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Experiments on confined droplets of the nematic liquid crystal 5CB have questioned long-
established bounds imposed on the elastic free energy of nematic systems. This elasticity, which
derives from molecular alignment within nematic systems, is quantified through a set of moduli
which can be difficult to measure experimentally and, in some cases, can only be probed indirectly.
This is particularly true of the surface-like saddle-splay elastic term, for which the available ex-
perimental data indicate values on the cusp of stability, often with large uncertainties. Here, we
demonstrate that all nematic elastic moduli, including the saddle-splay elastic constant k24, may
be calculated directly from atomistic molecular simulation. Importantly, results obtained through
in silico measurements of the 5CB elastic properties demonstrate unambiguously that saddle-splay
elasticity alone is unable to describe the observed confined morphologies.

Though liquid crystals[1] (LCs) have long been cen-
tral components of display technologies,[2] their optically
responsive and highly controllable nature has lead to a
host of emerging applications in nanoscale and colloidal
templating,[3] organic electronics,[4] biosensing [5, 6],
compact lenses,[7] and switchable diffraction gratings.[8]
These applications rely on their ordering elasticity, which
through competition with applied fields and surface in-
teractions can lead to topological defects whose nature
and structure is governed by a precise interplay.[9–11]
The balance between these different contributions to the
free energy is apparent in the morphologies adopted by
confined liquid crystals,[12–14] where it is possible to ma-
nipulate different variables to develop exquisitely sensi-
tive systems for sensing applications;[6, 15] a properly
chosen liquid crystal can in fact be balanced on a knife’s
edge, ready for a vanishingly small concentration of ana-
lyte to induce a mesoscopic transformation, visible under
standard crossed-polarizer optics. Precision engineering
of such new devices requires an in-depth understanding
of the elastic behavior of the underlying liquid crystalline
phases.
The resistance of a nematic phase to orienta-

tional deformations can be described through a set of
quadratic-order terms and the corresponding response
coefficients.[1] Though this energy is relatively simple to
phrase, elastic properties are difficult to measure exper-
imentally. The saddle-splay constant k24, in particular,
which penalizes bi-directional deformations,[16] is only
accessible through indirect measurements that rely on
morphological instability thresholds.[9, 10, 17–19] Past
experimental studies have reported conflicting measure-
ments, and some of the published values of k24 have in
fact been found to lie outside stability criteria established
by Ericksen,[20] hinting at new physics that may be used
to purposely engineer instability into nematic materials.
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Here, we demonstrate that it is possible to rely on de-
tailed molecular simulations to predict the elastic mod-
uli of nematic liquid crystals. By extending methods that
rely on real-space free-energy perturbations[21, 22] to uti-
lize an accurate atomistic force field,[23] we are able to
characterize the elastic coefficients and their temperature
dependence, including the elusive k24. Our results lead
to values consistent with Ericksen’s bounds and in agree-
ment with a subset of the experimental literature, imply-
ing that previously observed morphological instabilities
in confined 5CB[18, 24] could have been due to inap-
propriate ansätze, surface effects or higher-order elastic
moduli.

For the common case of apolar, achiral, and uniaxial
nematic liquid crystals, the phase may be described by
a local orientation vector n̂. In the absence of bound-
aries and external fields, this is a global vector. The
local order, however, can be perturbed, leading to small
distortions that incur a free energy penalty and a cor-
responding elastic restoring force. To order (∇n̂)2, the
elastic free energy can be written as[1]
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This expression contains the three most commonly used
terms and their corresponding coefficients, or elastic
moduli: splay (k11), twist (k22) and bend (k33). The
additional, divergence-like term (∝ k22 + k24) is referred
to as “saddle-splay”. It penalizes bidirectional deforma-
tions, and can be defined so that the free energy is pos-
itive definite to quadratic order for all deformations as
outlined by Ericksen.[20] An illustration of these elas-
tic modes is presented in Figure 1. While originating
from bulk interactions,[16] the saddle-splay may be trans-
formed into a surface-like term in a global free energy
integral by invoking Gauss’s Law. For that reason, it
has generally been overlooked in elastic studies,[1, 25]
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Figure 1. Top row shows idealized bulk elastic modes (a) splay
(b) twist and (c) bend, which can be directly probed in exper-
iment. Bottom row shows the 5CB molecule (d) and cylindri-
cal twist deformations, which rely on the saddle-splay elastic
constant k24, in stable (e) and unstable (f) configurations un-
der conditions of degenerate planar anchoring representative
of the commonly studied 5CB–water interface. Saddle-splay
is not directly measurable through experiment but can be in-
ferred indirectly. The positive-definiteness of the elastic free
energy expressed through the Ericksen bound k22−k24 ≥ 0 is
thought to be violated for 5CB, though experiments are not
conclusive.

and it is only recently that studies of confined ne-
matic LCs have unearthed its relevance. It likely con-
tributes far more than initially believed, to the point
where under some conditions it is suggested to lie out-
side the Ericksen bounds,[19, 24] a feature that hints
at an incomplete understanding of elasticity within the
framework of a Frank–Oseen description. One implica-
tion of this is a spontaneous twisting of toroidal[18] or
cylindrical[21] geometries, as depicted in Figs. 1 (d,e).
It should be noted that for k24, all published measure-
ments have been indirect, and have relied either on elas-
tic instability thresholds in various geometries or a fit to
a continuum model that matches polarized microscope
measurements.[9, 10, 17–19] This has lead to disagree-
ments in the values of k24 reported in the literature.

The goal of this work is to present a direct method
for calculation of the elastic moduli of nematic ma-
terials from molecular simulations of atomistically de-
tailed models, where predictions can be directly com-
pared to experimental measurements. In such systems,
the average orientation n̂ and degree of nematic align-
ment S are known and, as shown in this work, one
can apply nanoscopic deformations to the material in
order to excite distinct modes with extraordinary pre-
cision, thereby leading to direct, unambiguous charac-
terization of all elastic moduli, including k24 (see Sup-
plementary Information[26].) We hasten to note that
past efforts to determine elastic coefficients of liquid crys-

tals have focused on coarse-grained models.[31, 32] Cer-
tain features underlying liquid crystalline ordering,[33–
35] however, are inaccessible without molecular speci-
ficity, and thus a set of experimentally-tuned atomistic
force fields have been developed for in particular for
the widely studied cyanobiphenyls,[23] as well as more
general systems.[36] With such force fields, it has been
possible to describe liquid crystal ordering with an ex-
traordinary degree of precision, as revealed by compar-
ison to x-ray reflectivity[34, 35] and NMR data [37],
and by studies of the molecular structure within nematic
disclinations.[33]

Building on the pioneering work of Cleaver and
Allen,[38] several methods have been proposed to cal-
culate the elastic constants of coarse-grained LC sys-
tems from molecular simulations. As useful as they have
been, past methods have been hampered by limited ac-
curacy, numerical complexity, or significant finite-size
effects.[38–40] These limitations have prevented appli-
cations to atomistic systems without invoking theoret-
ical assumptions that limit the reliability of the calcula-
tions. Indeed, in one of the few studies that considered
a bulk model of 5CB, elastic constants were obtained
using three different approaches, leading to significantly
different elastic coefficients.[41] Though one set of pre-
dictions was found to be in good agreement with exper-
imental measurements, it was regarded as “fortuitous”
by the authors due to the crudeness of the underlying
assumptions.[41] Another notable effort utilized a hybrid
molecular field theory [42] to account for molecular flexi-
bility from structures predicted by density functional the-
ory (DFT) and geometry optimizations. Good agreement
with experiment was reported for the kii elastic constants
of several 4-n-alkyl-4’-cyanobiphenyls (nCBs) and para–
azoxyanisole. Unfortunately, that method cannot cap-
ture all molecular conformations and, in particular, the
mutual arrangements that nearby molecules adopt in re-
sponse to bi-directional deformations, which are essential
to capturing k24.

Recently, we proposed a new method [21] in which ori-
entational perturbations and free energy sampling tech-
niques are coupled to obtain elastic constants by exciting
distinct modes within the Frank free energy formulation
(Eqn. 1). The proposed method was shown to exhibit
minimal sensitivity to finite size effects [21, 22], and was
successfully applied to a broad range of Gay–Berne ellip-
soids [22] and Lebwohl–Lasher lattice models.[43, 44] In
this work, we demonstrate the ability to directly predict
in silico the elastic constants of an atomistic model of
5CB. This molecule is amongst the most widely studied
and well characterized LCs. Despite its individual asym-
metry, 5CB behaves largely as a uniaxial nematic. For
the following investigations, we employ the force field of
Tiberio and coworkers,[23, 26] which has been validated
against experimental data in a variety of situations.[33–
35, 37] From our elastic measurements, we aim to gain
additional insight into the relationship between molecu-
lar geometry and elasticity. More generally, we outline
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Figure 2. (a) A harmonic restraint is applied to the peri-
odic edges of a simulation box in order to align the molecules
in the ẑ direction. (b) Molecule orientations in the central
region of the simulation box are biased using basis function
sampling [43] according to the appropriate order parameter to
excite the desired elastic mode. Shown here are arrows rep-
resenting splay deformations from the non-perturbed state.
(c) Over the course of a simulation, molecules enter and exit
the respective regions. Only those molecules which lie within
the regions shown in purple (edges) and orange (center) are
biased. A gradient is produced across the box dimension as
a result of the sampling and the corresponding free energy
is calculated. The resulting bulk elastic coefficients (kii) for
5CB (d) are compared to experimental data from Madhusu-
dana and Pratibha [45] (squares) and Chen and coworkers [46]
(triangles). Connected circles represent elastic constant cal-
culations using the methodology outlined in this work. Un-
certainties are calculated using 1500 bootstrap cycles on the
collected decorrelated samples.

a computational methodology that in the future may be
used for reliable screening of the elasticity of liquid crys-
talline materials for specific applications.

We recount the general approach here; the reader is
referred to the Methods section and Ref. 21 for further
algorithmic details. The free energy perturbation ap-
proach requires an order parameter, ξ, to select for de-
formations that excite a particular elastic mode. We take
ξ to be ∂nx/∂x for splay, ∂ny/∂x for twist, and ∂nx/∂z
for bend in a system that is constrained to orient along
the ẑ axis at the periodic boundary. The director at the
center of the box is then tilted using a bias applied to the
chosen order parameter to produce chevron-like patters,
resulting in a uniform- magnitude gradient between the
restriction and bias regions. Figures 2 (a)–(c) illustrate
this approach in practice. A stiff harmonic potential is

used to maintain alignment to the ẑ direction at the pe-
riodic boundaries of the box. A second region in the
box center is actively biased along a chosen deformation
ξ using an adaptive sampling method. Here we choose
basis function sampling [43] (BFS), which is constructed
in way such that material properties are easily extracted
from the converged parabolic simulation bias. A similar
approach is adopted for k24 by imposing a cylindrical ge-
ometry with degenerate planar anchoring and selecting ξ
as ∂nθ/∂r.[21]

The elastic constants are measured by implement-
ing the order parameter in the advanced sampling soft-
ware suite, SSAGES.[47] Basis function sampling [43] is
used with N = 14 Legendre polynomials to measure
the free energy of director deformation over the inter-
val [−0.5, 0.5]. Using the final de-correlated trajectories
from the previous simulations, four walkers contribute
to the overall free energy estimate. Simulations are car-
ried out at NVT conditions for 1 µs at which point the
polynomial coefficients converge to within O(10−6). The
elastic constants are computed from the final free energy
surface as previously described.

We begin our studies by examining the standard bend,
twist and splay elastic constants of 5CB, for which mul-
tiple measurements exist in the literature. We choose,
for comparison, the results of Madhusudana and Prati-
bha [45] and Chen and coworkers,[46] which represent the
span of available experimental elastic measurements for
5CB. After locating the nematic–isotropic transition tem-
perature TNI , we proceed to measure elastic coefficients
at a range of temperatures down to 15 ◦C below TNI .
The 5CB model in question has been parameterized to
accurately represent the thermodynamics of the nematic–
isotropic transition, including appropriate densities and
orientational order. Strikingly, though elastic behavior is
not included in this parameterization, the measured coef-
ficients we obtain (see Figure 2 (d)) lie directly on top of
the experimental data range, intercalating the high and
low estimates, when plotted as a function of T − TNI .
It should be noted that the actual transition tempera-
ture predicted by this model is slightly higher (by two
degrees) than the experimental value.

Having established the validity of the proposed
method, we proceed to apply the free energy perturba-
tion technique to obtain k24. It is convenient to work in a
cylindrical geometry to isolate the normal twist mode,[16]
which is directly analagous to double-twist arrangements
observed in blue phases and toroidal geometries. Here, a
larger system is required to achieve a stable cylinder with
sufficient diameter to probe the normal twist mode. To
ensure that only this mode is probed, one must remove
the effects of surface interactions from the free energy
profile. It is sufficient to choose a system that has degen-
erate planar anchoring, so that any preferred surface ori-
entations are imposed only by the bulk nematic order. It
is well known, and has been validated in simulations,[34]
that aqueous interfaces impose exactly this type of an-
choring. Hence, we embed a periodic cylinder of liq-
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Figure 3. Snapshot of 5CB cylindrical system (a) with solvent
removed. Due to finite anchoring-induced ordering within
cylinder, the transition temperature TNI is shifted slightly (b)
by ≈ 5K. Calculated saddle-splay surface-like elastic constant
(k24) for 5CB (c) shows no violation of the Ericksen bound,
delineated by k22 − k24 ≥ 0. To validate k24 stability, we test
the unbiased director probability distribution p(nθ) against
the normal distribution (d) using a Kolmogorov–Smirnov test
(representative data at 296 K shown; distributions obtained
at other temperatures are plotted in Figure S2.[26]) Uncer-
tainties in the elastic measurements are estimated using 1500
bootstrap cycles on the collected decorrelated samples, yield-
ing error bars comparable to the size of the points. Rough-
ness in trendlines is not due to statistical uncertainty of each
measurement, but instead due to underlying fluctuations in
nematic order and volume that arise under NPT preparation.

uid crystal within a solvent of SPC/E water.[48] A typi-
cal configuration of this cylindrical geometry is given in
Fig. 3(a). The presence of an interface, while not affect-
ing orientation, nevertheless imposes order on the 5CB
cylinder, effectively shifting TNI by ≈ 5 K (see Fig 3(b))
while retaining similar ordering behavior [plotted as S(T )
in Fig. 3(b)] as a function of relative temperature. Hence,
to relate these measurements to bulk elastic constants, we
compare values at equivalent T − TNI .
The measured k24 elastic constants are shown in Fig-

ure 3(c).[26] It is apparent that the Ericksen bound
k22 − k24 ≥ 0 remains valid across the nematic range.
This is a striking result, as indirect measurements in
toroidal droplets,[18] escaped radial morphologies,[10]
and aperiodic nematic films [17] yield a value for k24
for which the normal modes of deformation[16] are ei-
ther nearly zero or in violation of the Ericksen bound.
From our calculations, saddle-splay retains a finite value
throughout the nematic range that is, surprisingly, es-
sentially constant. While this appears to be at odds

with the behavior of most elastic coefficients near the
nematic–isotropic transition, it is important to note that
k24 never appears by itself within expressions for bidi-
rectional modes,[16] and that the cost of the bidirec-
tional twist does trend toward zero, as one expects, when
disorder is approached. Importantly, the approach of
k22 − k24 to zero may help explain some experimental
observations, which are typically conducted at tempera-
tures near TNI . Our measurements also contradict the
predictions made for 5CB using a hybrid molecular field
theory [42] (MFT), which suggested that k24 varies sig-
nificantly over the nematic range, and even predicted
the value to switch sign at a crossover temperature of
T−TNI ≈ −7. Since that theory predicts k22 commensu-
rate with experiments, this indicates non-vanishing nor-
mal twist as the transition temperature is approached.
The differences in the present work and MFT predic-
tions could be due to to the underlying assumptions of
MFT, which does not capture spatial dependencies and
mutual deformations that play an important role in k24.
The k24 calculations reported here are significant in that
saddle-splay contributions to the free energy play a crit-
ical role in stabilizing defects[11] and affect morphologi-
cal transitions.[12] That we observe no lack of positive-
definiteness in our measurement suggests that the origin
of spontaneous radial[24] and double-twist[18] morpholo-
gies observed in experiments on 5CB must be revisited.

We emphasize again that, to our knowledge, published
experimental measurements of k24 are indirect, and uti-
lize an ansatz to extract a result. In contrast, we directly
simulate 5CB using a molecular model that has been
parameterized to match experimental densities and ori-
entational order, and report bulk (kii) elastic constants
that are in full agreement with experiment. Hence, we
were able to use the predictive power of molecular sim-
ulations to obtain a quantity that has proved elusive
experimentally. As this prediction contradicts mecha-
nisms hypothesized in experiment, it is important that
we rigorously support the results of our simulations. To
rule out the possibility that pre-transitional ordering in-
duced by anchoring or spatial inhomogeneity result in
misleading measurements, we also plot the radial profiles
of the nematic director within each cylinder at all stud-
ied temperatures in Fig. S1[26] and show that they are
linear. We also generate unbiased distributions of the di-
rector fluctuations in the outer annulus of each cylinder
and perform a one-sample Kolmogorov–Smirnov test at a
1% significance level against a centered normal distribu-
tion. A representative data set at T = 296K is shown in
Fig. 3(d). All samples reject the null hypothesis, which
indicates that there is no statistically detectable metasta-
bility at non-zero deflection. We include all director time
profiles, resulting distributions, and parabolic free en-
ergy profiles with P2 projections in the supplementary
material.[26]

One might also object to our k24 measurements on
the basis of finite size effects. The free energy pertur-
bation approach adopted here has been shown [21, 22]
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to be insensitive to finite size effects, particularly in
bulk measurements.[22] This is supported by the strik-
ing agreement of our kii measurements with experiment.
However, k24 is measured in cylindrical confinement,
which may exhibit different scaling behavior. While an
explicit study of finite size effects on k24 is currently in-
tractable due to immense computational costs, we pro-
pose that it is not relevant for the broader observation
that Ericksen’s equalities are satisfied. Finite-size scal-
ing may change the absolute magnitude of the reported
values, but will not change the stable morphology—the
cylinder either is or is not unstable to twisting. Unlike
prior coarse-grained studies, which found no appreciable
free energy penalty to twisting[21], and experiments and
theory demonstrating twisting in toroidal geometries is
similarly not penalized[18, 49], these results demonstrate
that k24-containing modes have a positive-definite free
energy for 5CB.

Our methods and calculations serve to shed light
into some long-standing concerns about the experimen-
tal value of k24 and its role in driving morphology transi-
tions in confined systems.[10, 14, 17, 18, 24] However,
in doing so, we have opened up new questions about
the true reason for such striking morphologies. If k24
is not responsible, then what is? Perhaps there are im-
portant third or fourth-order terms that arise to stabi-
lize spontaneous deformations. Perhaps anchoring and
explicit solution chemistry play a larger role than pre-
viously appreciated. Regardless, our calculations repre-

sent a useful milestone in material property prediction.
We demonstrate that it is possible to preict bulk elastic
constants in agreement with experiment for a molecu-
lar system from simulation, and we provide the only di-
rect measurements of saddle-splay k24 for the otherwise
extensively characterized 5CB. With these new develop-
ments, the tools are in place to begin unraveling the role
of higher order elastic coefficients and subtle anchoring
behaviors across the landscape of liquid-crystalline ma-
terials. A key challenge will be the calculation of the Lij

elastic coefficients utilized in the Landau–de Gennes Q-
tensor formalism, which are not directly accessible to ex-
periment, and are not directly mappable onto the Frank
elastic theory.[50] In each of these arenas, the methodol-
ogy and framework employed here provide a foundation
for computer-aided characterization and design of novel
mesogenic compounds.
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H. Xie, J. J. de Pablo, et al., ACS Nano (2017).
[4] V. G. Nazarenko, O. P. Boiko, M. I. Anisimov, A. K. Kadashchuk, Y. A. Nastishin, A. B. Golovin, and O. D. Lavrentovich,

Applied Physics Letters 97, 263305 (2010).
[5] S. V. Shiyanovskii, O. D. Lavrentovich, T. Schneider, T. Ishikawa, I. I. Smalyukh, C. J. Woolverton, G. D. Niehaus, and

K. J. Doane, Molecular Crystals and Liquid Crystals 434, 259/[587] (2005).
[6] R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, Liquid Crystals

Reviews 1, 29 (2013).
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