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The absence of negative sign problem in quantum Monte Carlo simulations of spin and fermion
systems has different origins. World-line based algorithms for spins require positivity of matrix
elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-
hole. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-
sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions
with the spins. Using this general approach, we study a half-filled Kondo lattice model on the
Honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator
and anti-ferromagnetically ordered phases, we find a partial Kondo screened state where spins
are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken

nematically.

Introduction.— Unconventional, highly entangled
states can arise if one starts from a system with a
large, perhaps infinite, ground state degeneracy, and
then perturb it slightly to lift the degeneracy. Frac-
tional quantum Hall systems clearly fall in this cate-
gory - at any fractional filling the non-interacting prob-
lem of electrons in Landau levels has an infinite number
of ground states in the thermodynamic limit. Perturb-
ing this system with interactions leads to a particular
superposition of these ground states that corresponds
to fractional quantum Hall states. Geometrically frus-
trated spin-systems provide a different class of similar
phenomenon. As an example, consider a square lat-
tice where each link ¢5 that connects vertices i, j hosts
a spin-1/2 spin S; ; which interact via the Hamiltonian
Hjassical = sz)k)lem S55%.SSi;- This model has
an extensive ground state entropy. Now consider a per-
turbed model: flquanmm = Aclassical + ESA? For non-zero
€ < 1, the ground state of this new model is identical to
that of Kitaev’s celebrated Toric Code [1]: it corresponds
to an equal weight superposition of the ground states of
flclassical. Motivated by these examples, we ask: what
phases emerge when a geometrically frustrated spin sys-
tem is coupled to fermions? In this paper we will describe
a quantum Monte Carlo (QMC) algorithm that allows
one to study a large class of frustrated magnets Kondo
coupled to fermions, and demonstrate the algorithm by
studying a specific model that exhibits new partial Kondo
screened (PKS) phases.

For concreteness, consider the following Hamiltonian of
interacting fermions and spins, H= HSpin + flpermion +
ﬁKondo where

Hsgin = (J55:5; + 95 (8187 +he)) (1)
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Here the spin 1/2 local moments (electrons) S;
(él = (él . él i)) reside on a graph with sites labeled by

z

i,j (z,y). J, JZ-# defines the potentially frustrated spin
model and 7}, the hopping matrix elements of conduc-
tion electrons subject to electron correlations modeled
by a Hubbard U-term [2]. The local moments and elec-
trons interact via the Kondo coupling Jle For the sake
of generality we have included the phase factor (—1)* in
the Kondo coupling. This phase factor plays no role if the
transverse spin interaction is bipartite, or if the Kondo
coupling includes conduction electron only on one sub-
lattice.

It is natural to ask when such Hamiltonians do not
suffer from the ‘sign problem’ [3, 4], which can make it
impossible to simulate quantum systems using finite re-
sources [5]. There are two potential sources of the sign
problem: the fermions and the geometrical frustration of
spins. Conventionally, these difficulties are tackled in two
very different ways. If the fermions were at half-filling on
a bipartite lattice, then one can employ a determinantal
QMC approach to solve this problem [4, 6-8], whereas
for spins, if the condition JZ-# < 0 is met (which still
allows for geometrical frustration [9, 10]), then one can
employ a worldline QMC or stochastic series expansion
[3]. Therefore, it is not obvious how one should approach
this problem in the presence of the Kondo coupling J¥
between the fermions and spins. So far all published
studies of frustrated Kondo lattice systems have been
limited to non-exact methods, such as mean-filed theory
[11], dynamical mean-field theory [12, 13], slave-particle
mean-field theory [14, 15], large-N methods [16, 17] and
variational Monte Carlo [18-20]. There have also been
studies where spins are treated classically [21], and which
therefore do not capture the physics of the Kondo screen-
ing (i.e., EPR singlet formation between spins and elec-



trons), which is an inherently quantum phenomena. Fi-
nally, there has also been progress in simulating a class
of models of fermions interacting with geometrically frus-
trated quantum spins [22-25]. However, the correspond-
ing algorithm is restricted to spin density-density interac-
tions between local moments and electrons, and does not
allow for Kondo coupling between spins and fermions.

In this paper, we will develop an algorithm to solve
Hamiltonians of the form in Eq. (1) using QMC when
flspin and _E[fermion are each sign problem-free within
bosonic (i.e. J < 0) and fermionic QMC (i.e. T,
defines a bipartite graph), respectively. The main in-
novation is the reformulation of the bosonic problem as
a fermionic one by writing spins in terms of Abrikosov
fermions [26]: S = %f‘Taf‘, where fi = (f;,fj) is a
two-component fermion with the constraint fif = 1.
The constraint is implemented exactly by adding Hub-
bard term Uf(fng - %)(ﬂﬁ - %), and taking the limit
Uy — oo. Most importantly, the total H , including the
Kondo coupling fIKondO, does not have a sign problem
either. This is a consequence of the existence of an anti-
unitary symmetry under which the Hamiltonian H is in-
variant [27]. The demonstration of the absence of the
sign problem builds on Ref. [28, 29] and is detailed in the
Supplemental Material (SM).

The relevance of this class of models to heavy fermion
phenomenology alluded above is worth elaborating upon.
A simple picture to capture the global phase diagram
of heavy fermions was provided by Doniach [30]. For
a single impurity Kondo problem, the cross-over to the
spin-singlet state takes place at the Kondo temperature
Tk = De V/CNERDITS) where N(Ep) is the conduction
electrons density of states at the Fermi level Ep, JX is the
exchange interaction between the localized impurity and
the conduction electrons, and D is the conduction elec-
trons bandwidth [31]. Now consider a dilute matrix of
such local moments. The conduction electrons will medi-
ate long-range RKKY exchange interaction between the
local moments whose scale is given by the temperature
TRKKY X (JK)2N(EF) When Tk > Trkky, one ob-
tains the heavy fermion liquid state, which is the many-
body analog of the single impurity’s spin-singlet ground
state. In contrast, in the opposite limit, the spins are
likely to order resulting in an antiferromagnetic metal.
However, as hinted above, there is a growing list of ma-
terials such as CePdAl, PrylroO7, YbAgGe, YbAI3Cs,
YbyPtoPb [32-36], where one observes phases which do
not easily fit into either of the two limits Doniach consid-
ered. The microscopies of these materials suggests that
geometrical frustration plays a crucial role in their phe-
nomenology. Therefore, one is motivated to consider a
phase diagram where geometrical frustration is an axis
in addition to the Kondo coupling.

Case study — For concreteness, we consider the fol-

FIG. 1. Phase diagram with in-plane antiferromagnetic (xy-
AFM), out-of-plane partial Kondo screening (z-PKS), spin-
rotation symmetry breaking partial Kondo screening (xyz-
PKS), and Kondo insulator (KI) phases from QMC simula-
tions at 7" = 0.025. Diamonds indicate onset of long-range
order; filled (open) symbols are critical values based on L = 6
and 9 (L = 9 and 12), (see text). Insets: Model and schematic
local moment structure in each phase.

lowing model (see Fig. 1):

Hepin = J* > S757,
((i.g))

N 1 N
HKondo - JK Z 5&10'&1 ’ Sl (2)

Hrermion = —1 Z é'ircréja’
(

i,4),0

In this special case JZLJ = 0, and the spins and conduc-
tion electrons reside on the same Honeycomb lattice so
that we can use the same indices from spins and conduc-
tion electrons. Furthermore, the canonical transforma-
tion S — —(=1)"5F, 57 — 57 will remove the factor
(—1)* in the Kondo coupling of Eq. (1). Hrormion and
ﬁKondo account for the generic Kondo lattice model on
the Honeycomb lattice. ﬁspin is geometrically frustrating
since it couples antiferromagnetically local moments on
the two underlying triangular Bravais lattices defined on
the next-nearest-neighbor sites ((z, j)) of the honeycomb
graph. While this term breaks down the SU(2) total spin
symmetry to U(1), time reversal symmetry, essential for
the Kondo effect, is present.

For the numerical simulations we used the ALF (Algo-
rithms for Lattice Fermions) implementation [37] of the
well-established finite-temperature auxiliary-field QMC
method [6, 8]. In the SM, it is shown how to rewrite
the model such that it will comply to the data structure
of the ALF [37]. We simulated lattices with L x L unit
cells (each containing four orbitals) and periodic bound-
ary conditions. Henceforth, we use t = 1 as the energy
unit and consider half-filling for the conduction electron.
All the data are calculated for temperature T = 0.025
(with Trotter discretization A7 = 0.1). In the considered
parameter range this choice of temperature is represen-
tative of the ground state.
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FIG. 2. J¥ dependence of correlation ratios for (a) in-plane
antiferromagnetic and (b) out-plane three-sublattice orders.
Here, J* = 0.16 and T = 0.025.

Phase diagram.— Fig. 1 shows the phase diagram in
the Kondo, J¥, versus frustration, J#, plane as obtained
from a finite-size scaling analysis. To map out the mag-
netic phase diagram we compute correlation functions of
the total spin, C*(k) = + o (0202)e™ =) where
O = So4* — SloLe and S/ = lélove, + S¢ with
o = (z,y,2). Here r labels the unit cell of the Honey-
comb lattice and A, B the orbitals [38].

We find four phases in the range of parameters showed
in Fig.1. The phase diagram along J* = 0 axis has
been studied earlier [28, 29], and reflects the aforemen-
tioned competition between RKKY and Kondo screen-
ing with an antiferromagnetic (AFM) phase at small J¥,
and a Kondo insulator (KI) at large J¥. At J* precisely
equal to zero, the model has an SU(2) symmetry and
therefore the AFM order parameter can point in along
any direction in the spin-space. At infinitesimally small
non-zero value of J?, the spins preferentially order in
the x-y plane to minimize the energy cost of geomet-
rical frustration. Hence this phase is characterized by
diverging C*/Y(k = T') and we denote it as xy-AFM in
Fig.1. As the geometrical frustration is increased, the
phase diagram changes dramatically. We find two new
phases which we denote as z-PKS and xyz-PKS where the
acronym PKS stands for partially Kondo screened. In the
z-PKS phase, the U(1) spin-rotation symmetry is unbro-
ken while the time reversal symmetry corresponding to
the operation S!°* — —S8!°"* is broken. Therefore, this
phase is characterized by a diverging C*(k = K) where
K corresponds the Dirac points of the tight binding con-
duction electron model. Thereby the z-PKS phase has a
V3 % /3 unit cell depicted in the inset of Fig. 1. The
existence of Kondo screening is crucial to understand the
qualitative features of the z-PKS phase, as discussed in
detail below. The xyz-PKS phase is a canted version of
z-PKS and can be thought of as a hybrid between xy-
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FIG. 3. (a) Single-particle gap Ay, at Dirac point [41] and
(b) free-energy derivative OF/8J%. Here, T = 0.025.

AFM and z-PKS in that it breaks the symmetries that
are broken in either of these phases.

To locate the phase boundaries we consider the renor-
malization group invariant quantity [39, 40]

_ C%(ko + k)

R,=1
C (ko)

(3)
Here kg is the ordering wave vector and ok the smallest
wave vector on the lattice. By definition, R, — 1 for L —
o0 in the ordered state whereas R, — 0 in the disordered
phase. At the critical point, R, is scale-invariant for
sufficiently large L so that results for different system
sizes cross. Figures 2(a) and (b) show typical results at
J# = 0.16. The phase boundaries in Fig. 1 are based on
the crossing points of results for L = 6,9 (filled symbols)
and L = 9,12 (open symbols), respectively.

The z-PKS phase— The atomic limit (¢ = 0) re-
veals aspects of the z-PKS phase. Here the A and B
sublattices decouple to form two independent triangu-
lar lattices. Translation symmetry breaking of the z-
PKS phase leads to a unit cell, R, for a single sublat-
tice, consisting of three distinct sites, n, each accom-
modating a spin and a conduction electron. A simple
variational ansatz for the wave function is the product

state |\I/0> = HR,n(o‘n-,Oma O>R,n + Z O[n”u|1, ,u>R.,n)
p=-1,0,1

where [0,0) g.n, |1, 1) r.n denote singlet and triplet states
of the spin and conduction electrons. The normalization
condition |a,| = 1 holds. The variational energy per
unit cell takes the form E = Y. (JXK, — £J*M?) +
23U (2, M,)? with K, = (Wo|iel, oep . - Sy, Vo)
and M, = <W0|5'§7n|ﬁ!0). As apparent from this form,
Kondo screening competes with the geometric frustration
[43] and it is energetically favorable to set ) M, = 0.
This condition is by no means imposed by symmetries
and we have thus checked that our realizations of the z-
PKS phase in the QMC simulations indeed satisfy this



FIG. 4. Probability distribution of (a) M; and (b) MaMp
for z-PKS phase at J* = 0.60 and JX = 1.5; see text. Here,
T =0.025 and L = 9.

condition approximately (see the SM).
The QMC histogram in the complex plane of

M, = Mye® + Mye'S + Mge's (4)

uniquely reveals the spin structure. Here the additional
index [ runs over sublattices A and B. Figure 4(a) plots
this quantity, and as detailed in the SM corresponds
to the six-fold degenerate state (Miya, Maa, M3s) =
ﬁl(2, —17 —1) and (MlBa MQB, M3B) = 7’%(—2, 1, 1) For
example, at J* = 0.60 and JX = 1.5, m = 0.1. Away
from the atomic limit, the two sublattices couple. The
histogram of the quantity MM}, shown in Fig. 4(b)
demonstrates (see SM) that the two sublattices lock in
as depicted in Fig. 1.

Single particle gap.— To set the notation, we write the
low energy theory of Dirac fermions on the honeycomb
lattice as Hpirac = dop Ut (p) [pa™ + py7¥] U(p) (see SM
for details). The 7 Pauli matrices act on the sublattice
index. The spinors U also carry a spin-index and a valley
index, which are acted upon by the Pauli matrices o and
o respectively.

In the large J¥ limit, one obtains a Kondo insula-
tor, whose ground state may be approximated by a di-
rect product of Kondo singlets between the spin and
conduction electron on each site. The single particle
gap corresponds to the energy cost of breaking a sin-
glet and is set by J¥ [44]. At the mean-field level, the
xy-AFM magnetic ordering induces a mass term M, , =
(Uir#0, 17 ) of magnitude JX such that Ay, o JX.
This is consistent with the data at J* = 0.16 shown in
Fig. 3. In contrast, the z-PKS phase retains the U(1)
spin rotation symmetry but instead breaks time rever-
sal, lattice translation and point group symmetries. If
the sum of the magnetic moments in both sub-lattices
vanishes (i.e. > M, = 0) then the Dirac points will
only shift along the x-direction and no single particle gap
opens. This is because in the low energy theory, such an
order parameter corresponds to the term Ut (p)7¢o* U (p)
which is not a Dirac mass since it does not anti-commute
with the low energy Hamiltonian. However, the Kondo

screening is still present in the z-PKS phase as evident
by the small value of the magnetic order parameter along
the z-direction. Therefore, we expect that the mass
scale will be set by Kondo effect and will depend non-
perturbatively on J¥ as in the single spin Kondo prob-
lem. On the other hand, if the condition ), M,, = 0
is not satisfied, a mass term proportional to J¥ will be
generated in the z-PKS phase. As noted earlier, numeri-
cally we find that the condition ) M,, = 0 is satisfied
to a very good approximation. Such a transition from a
perturbative to a non-perturbative mass is in qualitative
agreement with Fig. 3 where one notices that the single
particle gap drops as one enters the PKS phase when in-
creasing the frustration. A precise determination of A
in this phase is difficult since nematicity allows the Dirac
points to meander.

Phase transitions.— Figure 3 plots OF/9JX =
<%égaéi - S, along various J* cuts. We interpret the
absence of jump in this quantity in terms of a continu-
ous quantum phase transitions. Taking into account time
reversal and translation symmetry breaking, the z-PKS
phase has a 6-fold degeneracy and can be described by an
XY model with Cg anisotropy. Cg anisotropy is irrelevant
at criticality such that the z-PKS phase can be charac-
terized in terms of an effective emergent U(1) symmetry.
The xy-AFM phase is characterized by broken U(1) spin
symmetry. In the phase diagram of Fig 1 all phase trans-
lation lines are characterized by the spontaneous symme-
try breaking of only one of the two aforementioned U(1)
symmetries. Thereby we expect all quantum phase tran-
sitions to belong to the (2+1)D XY universality class.

Summary and discussion.— Using a fermion represen-
tation of the spin-1/2 algebra, we have introduced a large
class of Kondo lattice models (see Eq. (1)) that are free
of the negative sign problem within the auxiliary field
QMC approach. Essentially we require the spin system
to be free of sign problem in world-line type approaches
and the fermionic system to be particle-hole symmetric
such that auxiliary field approaches are equally sign free.
This insight gives the possibility of tackling a number of
Kondo lattice problems where frustration plays a central
role in understanding the phase diagram. It is of experi-
mental relevance since geometrical frustration is present
in many heavy fermion materials [32-36].

We have used our approach to compute the phase dia-
gram of the Kondo lattice model on the honeycomb lat-
tice with geometrical frustration thus adding a new axis
in the generic Doniach phase diagram. Aside from the
RKKY driven AF order (xy-AFM) with broken U(1) spin
symmetry and the Kondo state with the full microscopic
symmetries of the model, we observe a novel phase (z-
PKS) driven by geometrical frustration. This phase has
U(1) spin symmetry but breaks time reversal, lattice and
point group symmetries. It can be understood as a re-
alization of partial Kondo screening in the sense that
the strength of Kondo screening becomes site dependent



S0 as to accommodate frustration. As opposed to non-
frustrated models [28, 44], the magnetic ordering in the
z-PKS phase, does not necessarily lead to the opening
of a single particle gap. To the best of our knowledge,
this is first realization of this type state using approxi-
mation free exact methods. Although our Hamiltonian is
not constructed to model a specific material, it is worth
noting that a distinct feature of geometrically frustrated
heavy-fermion materials such as CePdAl [32] is that sim-
ilar to the z-PKS phase, they host magnetically ordered
phases where the unit-cell is enlarged and different sites
within a unit cell have a different value of the magnetic
order parameter.
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