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We address the question about the origin of the 1
2
e2

h
conductance plateau observed in a recent

experiment on an integer quantum Hall (IQH) film covered by a superconducting (SC) film. Since
1-dimensional (1D) chiral Majorana fermions on the edge of the above device can give rise to the half
quantized plateau, such a plateau was regarded as a smoking-gun evidence for the chiral Majorana

fermions. However, in this paper we give another mechanism for the 1
2
e2

h
conductance plateau. We

find the 1
2
e2

h
conductance plateau to be a general feature of a good electric contact between the IQH

film and SC film, and cannot distinguish the existence or the non-existence of 1D chiral Majorana
fermions. We also find that the contact conductance between SC and an IQH edge channel has a
non-Ohmic form σSC-Hall ∝ V 2 in kBT � eV limit, if the SC and IQH bulks are fully gapped.

One promising direction in building a quantum computer
is topological quantum computation [1], which can be
realized using non-abelian topological orders that con-
tain Ising non-abelian anyons, or other more general non-
abelian anyons [2, 3]. Although Ising non-abelian anyons
cannot perform universal topological quantum computa-
tion [4], they can be realized by non-interacting fermion
systems, such as the vortex in p+ ip 2D superconductor
[5–7].

In 1993 [11], it was predicted that some non-abelian
fractional quantum Hall states [2, 3] can have 1D chiral
Majorana fermions on the edge. (1D chiral Majorana
fermions are fermions with only fermion-number-parity
conservation [8, 9] that propagate only in one direction
in 1D space.) In fact, the appearance of an odd number of
1D chiral Majorana fermion modes on the edge implies
the appearance of non-abelian defects in the bulk [11, 12].
The non-abelian states may have already been realized in
experiments [13–15]. In particular, the recently observed
half quantized thermal Hall conductance [16] from the
quantum Hall edge states [11, 17, 18] provides a smoking-
gun evidence of 1D chiral Majorana fermions and its par-
ent non-abelian fractional quantum Hall states. In 2000
[5], 1D chiral Majorana fermions were predicted to exist
on the edge of p+ ip 2D superconductor. More recently,
1D chiral Majorana fermions were predicted to exist on
the interface of ferromagnet and superconductor on the
surface of topological insulator [7], and on the edge of an
IQH film covered by a SC film [19, 20].

In Ref. 19 and 20, it was shown that 1D chiral Majo-

rana fermions can give rise to a 1
2
e2

h conductance plateau
for a two terminal conductance σ12 across a Hall bar
covered by a superconductor. Recently, Ref. 10 ob-
served such a conductance plateau, which was regarded
as a “distinct signature” of 1D chiral Majorana fermions.
This leads to the claimed discovery of 1D chiral Majorana
fermions. The discovered Majorana fermions were named
“angel particles”, and have attracted a lot of attention.

However, observing 1
2
e2

h conductance plateau may not
imply the existence of 1D chiral Majorana fermions. For

example, in Fig. 4A of the very same paper [10], 1
2
e2

h con-
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FIG. 1. A Hall bar covered by a SC film. The Hall bar under
the superconductor can be in (a) a Chern number NChern = 1
IQH phase (B > Bc), (b) a metallic phase, and (c) a Chern
number NChern = 0 insulating phase (B < Bc), depending on
the correlation length ξ of the percolation model.

ductance was observed in a stacked IQH film and a metal
film without the Majorana fermions. Similarly, Ref. 10

and 21 pointed out that 1
2
e2

h conductance can appear
when the Hall bar under the SC film is in a metallic
state without the Majorana fermions.

Such an explanation was discarded in Ref. 10 and 21
since it was thought to be inconsistent with the observed
magnetic field B dependence of σ12 (Fig. 2C and Fig. 4A

in Ref. 10). In the experiment, σ12(B) is found to be 1
2
e2

h
at high field B where the topped film is normal metallic

state. Then it increases up to e2

h , as B is reduced and
the topped film becomes SC. As B is reduced further,

σ12 drops to a 1
2
e2

h plateau near Bc, and then to near 0.

Result: In this paper, we study the Majorana-

fermionless mechanism for the 1
2
e2

h conductance plateau
in detail. We find that it can explain the whole observed

magnetic field B dependence of σ12 very well. The 1
2
e2

h
conductance plateau can be a general feature of a good
electric contact between the IQH and the SC films, re-
gardless if the 1D chiral Majorana fermions exist or not.

A general understanding for two terminal con-
ductance σ12: In the experiment [10], the SC layer is
directly deposited on the Hall bar. Naively, one would
expect the contact resistance, 1/σSC-Hall, between the su-
perconductor and the edge channels of the Hall bar under
the superconductor, to be much less than h

e2 = 25812Ω.

In this case, the two terminal conductance σ12 = 1
2
e2

h . To
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see this, we assume the superconductor to have a van-
ishing chemical potential µSC = 0 and there is no net
current flowing in or out of the superconductor. So the
chemical potentials on the two incoming edge channels
of the Hall bar should be opposite: µ0 and −µ0. The
chemical potentials on the two outgoing edge channels of
the Hall bar are also opposite: µ and −µ (see Fig. 1).

When the contact resistance 1/σSC-Hall is low, the
chemical potentials on the two outgoing edge channels
vanish: µ = µSC = 0, and the two terminal conductance

σ12 is given by σ12 = µ0−(−µ)
µ0−(−µ0) = 1

2 . (In this paper, all

conductances are measured in unit of e2

h .) We see that
the 1

2 quantized conductance of σ12 is a very general fea-
ture of good contact between the superconductor and the
Hall bar under the superconductor, and one might ex-
pect that the two terminal conductance σ12 to be always
1
2 . However, in the experiment, σ12 ≈ 1 is observed for
certain range of magnetic field. This suggests the other
limit that the superconductor and the Hall bar decouples
electronically, as then σ12 should be 1, contributed purely
from the IQH bar. Indeed, that the contact resistance be-
tween the superconductor and the Hall bar can be much
larger than h

e2 is observed directly at corresponding fields
via the measurement of σ13 shown in Fig.4C in Ref. 10.

The observed σ12 = 1
2 at high field, where the topped

film is metallic, indicates the contact resistance between
the metal film and the Hall bar is always much less than
h
e2 . But in the low field region where the film above IQH
layer becomes SC, the measured σ12 varies from 1 to 1

2
depending on B, indicating that the contact resistance
1/σSC-Hall between the SC film and the Hall bar can be-
come much bigger than h

e2 , as well as much smaller. In
this paper, we explain such a striking pattern of the con-
tact conductance σSC-Hall via a percolation model.

As the magnetic field B is reduced through the critical
value Bc, the Hall bar under the superconductor changes
from a Chern number NChern = 1 IQH state to a Chern
number NChern = 0 insulating state. We use a percola-
tion model to describe such a transition. In the perco-
lation model, when B is reduced through Bc, the chiral
edge channels of IQH state become more and more wig-
gled. Correspondingly, the Hall bar under the supercon-
ductor has three phases: the NChern = 1 phase in Fig.
1a and the NChern = 0 phase in Fig. 1c, where the IQH
edge channel can be straight and short if B is far away
from Bc. Thus the contact resistance 1/σSC-Hall is high.
The third phase is a metallic phase in Fig. 1b, where
the IQH edge channel fills the sample and its trajectory
length Ledge is long. As a result, the contact resistance
1/σSC-Hall is low.

A microscopic calculation of the contact conduc-
tance σSC-Hall between the superconductor and
an IQH edge channel: We first assume the SC film
and IQH bulk are clean enough that they are both fully
gapped. Thus only Andreev scattering along the edge
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FIG. 2. (a) A segment of IQH edge under a superconductor.
(b) L>edge and L<edge as a function of B.

contributes to σSC-Hall. To include the effects of charge
conserving inelastic scattering, we first divide the IQH
edge channel into many segments each of length lφ –
the dephasing length. Each segment is coupled to a su-
perconductor (see Fig. 2a) which induces the coherent
Andreev scattering: free electrons up to a chemical po-
tential µ can be coherently scattered and come out as
holes. The incoming edge state is an equilibrium state
with an incoming chemical potential µ, while the outgo-
ing edge state out of one SC segment is not an equilibrium
state. Charge conserving inelastic scattering equilibrates
the outgoing edge state, which now has an chemical po-
tential µ′. From µ−µ′, we can determine σSC-Hall for the
segment.

To analyze the change in µ after passing a single SC
segment, let us start with the equation of motion for free
chiral fermion:

i~ċ = vf (− i∂x − kF )c+
i~
2

[vsc∂xc
† + ∂x(vscc

†)], (1)

where vf is the velocity of the chiral fermion, kF is Fermi
momentum at µ = EF = 0, and vsc(x) is the SC coupling
coefficient which depends on x (vsc = 0 for edge not under
the superconductor). We treat (c, c†) = (ψ1, ψ2) ≡ ψT as
independent fields. For a mode with a frequency ω, the
equation of motion becomes

ωψ =

(
vf (− i∂x − kF ) i

2 (vsc∂x + ∂xvsc)
i
2 (v∗sc∂x + ∂xv

∗
sc) vf (− i∂x + kF )

)
ψ (2)

or (up to linear vsc order)

− vf

(
1 vsc

2vf
v∗sc
2vf

1

)−1

i∂x

(
1 vsc

2vf
v∗sc
2vf

1

)−1

ψ

≈
(
ω + vfkF 0

0 ω − vfkF

)
ψ. (3)
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Let ψ̃ =

(
1 vsc

2vf
v∗sc
2vf

1

)−1

ψ, we can rewrite the above as

− i∂xψ̃(x) = M(x)ψ̃(x), (4)

M(x) =

(
1 vsc

2vf
v∗sc
2vf

1

)(
ω
vf

+ kF 0

0 ω
vf
− kF

)(
1 vsc

2vf
v∗sc
2vf

1

)

≈ ω

vf

(
1 vsc(x)

vf
v∗sc(x)
vf

1

)
+

(
kF 0
0 −kF

)
.

Solving the above differential equation, we find ψ̃(x) =
P [e i

∫ x
0

dxM(x)]ψ̃(0), where P is the path ordering. Now
we assume that vsc(x) = 0 for x < 0 and x > lφ, and
vsc(x) is a constant for x ∈ [0, lφ]. We find ψ(lφ) = Sψ(0),
where the unitary matrix S is given by

S = P [e i
∫ lφ
0 dxM(x)] = e iφ

(
e ikF lφ cos θ i e iϕ sin θ
i e− iϕ sin θ e− ikF lφ cos θ

)
and, to the linear order in vsc, the scattering angle is

θ ≈ |vsc|ω
kF v2

f

sin(kF lφ). (5)

The modes with a frequency ω are electron-like state
with momentum k + kF and hole-like state with mo-
mentum −k + kF , where k = ω

vf
. Denote ak, bk as in-

coming and outgoing electron annihilation operator of
momentum k measured from kF . bk is determined by
bk = S11ak + S12a

†
−k.

In the zero temperature limit, the occupation numbers
of incoming and outgoing electrons are 〈a†kak〉 = 1 for

k ≤ µ
~vf , 〈a†kak〉 = 0 for k > µ

~vf , and

〈b†kbk〉 = cos2 θ〈a†kak〉+ sin2 θ
(

1− 〈a†−ka−k〉
)

=


0, k > µ

~vf
cos2 (θ(k)) , − µ

~vf ≤ k ≤
µ

~vf
1, k < − µ

~vf

(6)

The outgoing electrons relax to µ′ with the same density

∫ µ
~vf

− µ
~vf

dk

2π
cos2

(
|vsc| sin(kF lφ)

vfkF
k

)
=

∫ µ′
~vf

− µ
~vf

dk

2π
(7)

⇒ µ′ =
~v2
fkF

2|vsc| sin(kF lφ)
sin

2|vsc| sin(kF lφ)µ

~v2
fkF

(8)

When |vsc|µ
~v2
fkF
� 1, we have

µ′ = µ

1− 1

6

(
2|vsc| sin(kF lφ)µ

~v2
fkF

)2
 .

This change of µ through one segment of length lφ allows
us to obtain, for a length δLedge edge,

σSC-Hall = −δµ
µ

=
( µ

∆

)2 δLedge

lφ
(9)

with 1
∆ =

√
1
3
|vsc|
v2
f~kF

, where we have replaced sin2(kF lφ)

by its average 1
2 . Interestingly, σSC-Hall is proportional

to µ2, or rather, non-Ohmic.
In the high temperature limit,

〈a†kak〉 = g(µ, k) ≡ 1

e
~vfk−µ
kBT + 1

〈b†kbk〉 = cos2 θg(µ, k) + sin2 θ(1− g(µ,−k))

= cos2 θg(µ, k) + sin2 θg(−µ, k).

(10)

Keep to the first order of µ
kBT

and vsc

vf
, we reach

µ′ = µ
[
1− 2π2

3

(
|vsc| sin(kF lφ)

vfkF

kBT

~vf

)2 ]
. (11)

From this we obtain, for a length δLedge edge,

σSC-Hall = γ
δLedge

lφ
. (12)

with γ = π2

3

(
|vsc|kBT
~v2
fkF

)2

. In this case, σSC-Hall is inde-

pendent of µ and is Ohmic.
If either the SC film or IQH bulk are not clean enough

and have gapless electronic states that couple to the chi-
ral edge channel, we can take into account those gapless
states by assuming the superconductor to be a gapless
superconductor. In this case, σSC-Hall will in addition re-
ceive a contribution from the electron tunneling into the
quasiparticle states in the gapless superconductor. We
expect such a contribution to be Ohmic and σSC-Hall can
be modeled by (12) in all temperature range.

In the following, we will separately calculate σ12(B),
using the non-Ohmic (9) or Ohmic (12) σSC-Hall.
Non-Ohmic case: From (9), we see that the contact re-
sistance can be much bigger than h

e2 , as long as µ2δLedge

is small enough. The current δI = σSC-Hall µ flowing
from the edge to the superconductor will cause a drop in
the chemical potential µ along the edge:

dµ(x) = −σSC-Hall µ = −µ
3(x)

lφ∆2
dx (13)

Solving the above equation, we find µ = µ(Ledge) =

µ0/
√

2µ2
0

∆2lφ
Ledge + 1 for an edge of length Ledge.

Therefore, for B > Bc (see Fig. 1a)

σ12 =
µ0 + µ

2µ0
=

µ0 + µ0√
2µ2

0
∆2lφ

L>edge+1

2µ0
, (14)
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FIG. 3. Two terminal conductance σ12 as a function of
magnetic field B. (a) Non-Ohmic case (18), with ledge/a = 70

and
2µ2

0ledge

∆2lφ
= 0.12. Deviation of σ12 from e2

h
and 0 will have

a clear voltage V = µ0/e dependence. (b) Ohmic case (19),

with γ
ledge

lφ
= 1/14. The curve for Ohmic case is independent

of the percolation cut-off length scale a.

In a percolation cluster of size ξ, the edge length is ξ2

a ,
where a is the cut-off length scale of the percolation

model. The total edge length is L>edge =
ledge

ξ
ξ2

a = ledge
ξ
a .

The linear size of the percolation cluster ξ scales as

ξ = a
( |Bc −B|

B0

)−ν
+ a, ν = 1.33 (15)

With the above choice, we see that (L>edge, σ12) →
(ledge, 1) as B → ∞ (assuming

2lφµ
2
0

~2v2
f
ledge is small), and

(L>edge, σ12)→ (∞, 1
2 ) as B → Bc.

But ξ can only increase up to ledge, the width of su-
perconductor covered Hall bar, beyond which ξ remains
to be ledge in the metallic phase in Fig. 1b . To model
such a behavior, we choose

L>edge = a−1ξledgeΘ(B −Bc)Θ(ledge − ξ)
+ a−1l2edgeΘ(ξ − ledge) (16)

+ a−1l2edge e(ledge−ξ)/ξΘ(Bc −B)Θ(ledge − ξ).

where Θ(x) = 1 if x > 0 and Θ(x) = 0 if x < 0.
When B > Bc, the above gives L>edge = a−1ξledge or

a−1l2edge near Bc (see Fig. 2b). When B is much less

than Bc, we also assign L>edge a very large value to make

µ0/
√

2µ2
0

∆2lφ
L>edge + 1 vanishes. This allows us to combine

the B > Bc and B < Bc results together later. For
B < Bc (see Fig. 1c)

σ12 =
µ0 − µ

2µ0
=

µ0 − µ0√
2µ2

0
∆2lφ

L<edge+1

2µ0
,

L<edge = a−1ξledgeΘ(Bc −B)Θ(ledge − ξ)
+ a−1l2edgeΘ(ξ − ledge) (17)

+ a−1l2edge e(ledge−ξ)/ξΘ(B −Bc)Θ(ledge − ξ)

We can combine the B > Bc and B < Bc cases:

σ12 =
1

2

1 +
1√

2µ2
0

∆2lφ
L>edge + 1

− 1√
2µ2

0

∆2lφ
L<edge + 1


(18)

With the above design of L>edge and L<edge, only one of the

two terms in 1√
2µ2

0
∆2lφ

L>edge+1

− 1√
2µ2

0
∆2lφ

L<edge+1

contributes in

either the NChern = 1 phase or the NChern = 0 phase. In
the metallic phase (see Fig. 1b), both terms are small,
and their difference makes the contribution even smaller.
This gives rise to 1

2 quantized two terminal conductance.
The above result is plotted in Fig. 3a. Such a result is
very close to what was observed in Ref. 10. But it has
a very different mechanism than what was proposed in

Ref. 19 and 20. In our non-Ohmic case, the σ12 = 1
2
e2

h
plateau roughly corresponds to the metallic phase in Fig.
1 where ξ/ledge ≈ 1, with no need to introduce 1D chiral
Majorana fermion on the edge.
Ohmic case: From (12), we see that the contact resis-
tance can be much bigger than h

e2 , if γδLedge/lφ is small

enough. From the equation dµ(x) = −γ dx
lφ
µ(x) and for

a given total length of the edge channel Ledge, we find
µ = µ0 e−γLedge/lφ . Therefore, for B > Bc (see Fig. 1a)

σ12 = µ0+µ
2µ0

= 1+e−γLedge/lφ

2 , where Ledge =
ledge

ξ
ξ2

a =

ledge
ξ
a . With ξ given in (15), we see that Ledge → ledge

as B → ∞ and Ledge → ∞ as B → Bc. Similarly, for

B < Bc (see Fig. 1c), σ12 = µ0−µ
2µ0

= 1−e−γLedge/lφ

2 . We
can combine the B > Bc and B < Bc cases together:

σ12 =
1 + sgn(B −Bc)e

−(
Bν0

|Bc−B|ν
+1)

γledge
lφ

2
. (19)

The above result is plotted in Fig. 3b. Such a result for
Ohmic case is also very close to what was observed in

Ref. 10. But for Ohmic case, the σ12 = 1
2
e2

h plateau is
much broader than the metallic phase in Fig. 1.
Summary: In the percolation model, we considered two
possible cases, Ohmic case and non-Ohmic case, both can
explain the σ12(B) cuve in the experiment Ref. 10. More
experiments are needed to see which case applies. If an
Ohmic contact conductance is observed, it will indicate
either the SC and/or IQH bulks have gapless electronic
states, or the electron temperature is high.

If a non-Ohmic contact conductance σSC-Hall between
the superconductor and the IQH edge channel is observed
near σ12 ∼ 0 or σ12 ∼ 1, it will indicate the SC and IQH
bulks to be fully gapped. Therefore observing a non-
Ohmic contact conductance is a sign of clean samples,
which is necessary for further strong quantum coherent
phenomena. For instance, on such samples at low enough
temperature, the dephasing length can become large, and
1D chiral Majorana fermions can appear.
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After posting this paper, another paper Ref. 22 was
posted where the same conclusion was reached via a sim-
ilar consideration. A month later, Ref. 23 was posted,
where the dephasing length lφ is assumed to be larger
than the “p+ ip SC coherence length” ξp+ip (put it an-
other way, the minimum width of a p+ ip SC stripe such
that 1D chiral Majorana fermions on the two edges are
well separated). In this case, the 1D chiral Majorana

edge mode can be well defined, and give rise to a 1
2
e2

h
plateau in σ12. In this paper, we consider the opposite
limit lφ < ξp+ip without coherent 1D chiral Majorana

edge mode, and show that there is still a 1
2
e2

h plateau.
Furthermore, the B dependence of σ12 can agree with
the experiment very well, with a proper choice of some
parameters. In particular, if we choose B0 ∼ 200mT, the
plateau width will be about 20mT (see Fig. 3).

We would like to thank K. L. Wang, Yayu Wang, and
Shoucheng Zhang for very helpful discussions. This re-
search was supported by NSF Grant No. DMR-1506475
and NSFC 11274192.
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