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When a d-dimensional quantum system is subjected to a periodic drive, it may be treated as a
(d+ 1)-dimensional system, where the extra dimension is a synthetic one. This approach, however,
affords only a limited level of control of the effective potential along the synthetic direction. In
this work, we introduce a new mean for controlling the Floquet synthetic dimension. We show that
arbitrary potentials, as well as edges in the synthetic dimension could be introduced using a memory
component in the system’s dynamics. We demonstrate this principle by exploring topological edge
states propagating normal to synthetic dimensions. Such systems may act as an optical isolator
which allows transmission of light in a directional way. Also, we suggest an experimental realization
of the memory effect in spins coupled to nano-fabricated Weyl semimetal surface states.

Introduction. The discovery and control of new phases
of matter are at the heart of condensed matter physics.
In recent years, several new means of realizing interest-
ing quantum phases have been proposed: synthetic di-
mensions and periodic drives. Synthetic dimensions con-
stitute a reinterpretation of discrete internal degrees of
freedom that play the role of lattice sites, and hence of
additional dimensions. Several physical realizations of
synthetic dimensions were put forward [1–6]. Some use
ultra-cold gases [7–9], where the synthetic dimension is
implemented by employing internal atomic states, and
some use optical systems [10–13], in which the modes of
a ring resonator at different frequencies take the role of
the lattice sites. Periodic drives have been also proposed
as a tool for generating new phases. They may alter the
electronic spectrum of crystals [14–35], leading to exotic
phases and phase transitions, among them, the topologi-
cal, Anderson and anomalous Floquet insulators [23–28],
time crystals [32–35] and the many body localization-
delocalization transition [29–31].

Periodic drives may also modify the system by intro-
ducing a synthetic dimension. Within the Floquet frame-
work, quantum states become dressed by all possible har-
monics of the drive frequency (photons). As used in
Ref. [36], the number of photons (i.e., the harmonic)
appearing in a Floquet dressed state serve as a synthetic
dimension. A related path to a synthetic dimension is
the use of the photon number in an irradiated optical
cavity [10–13]. While this strategy allows introducing
additional dimensions which are externally controlled, it
has a strong drawback: the effective potential that the
system exhibits along the synthetic dimensions can not
be controlled. Furthermore, for Floquet induced syn-
thetic dimensions, the time derivative in the Schrödinger
equation results in a linear potential, and hence a force,
along the Floquet dimension. Additionally, the Floquet
synthetic dimension is always translational-invariant, i.e.,
only hopping and uniform on-site terms are allowed [37]
and edges can not be formed, which particularly hampers
the observation of topological edge state behavior [38].
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FIG. 1. (a) The equivalence between a TLS in the pres-
ence of a drive and a memory kernel and particles hopping
on a 1D synthetic lattice. (b) In blue, the gap parameter
µn (Eq. (5)), the synthetic electric field in units of 5~ω (red)
and The absolute square of the two solutions of Eq. (7) with
η = 0 (green). Evidently, there is an electric-field-free zone in
n-space in which the system hosts two localized solutions near
the jump in the gap parameter (n0 = 110, n1 = 50, µ = 10,
δ = −9.9).

In this manuscript, we seek to overcome these limi-
tations by introducing a new means to control Floquet
synthetic dimensions. The key insight is that allowing
the system’s dynamics to depend on its past, provides
the necessary tools for controlling the effective poten-
tial the system exhibits along the synthetic dimension.
Just as real-space potentials correspond to mixing dif-
ferent momentum states, non-uniform potentials in the
Floquet space correspond to non-diagonal elements in the
time domain. Below, we demonstrate how non-locality
in-time, brought about by memory effects in particular,
allow the control of the effective potential as a function of
photon numbers. Not only could the undesirable effective
electric fields be eliminated, but edges in the synthetic di-
mension can also be created. Below, we apply this idea
to zero and one-dimensional synthetic-dimension topo-
logical systems, explain how such memory dependence
could be constructed, and discuss possible applications.
0+1 dimensional model. Our first goal is to map the
dynamics of a periodically-driven quantum system, in-
cluding memory effects, into a lattice model. Consider



2

the non-Markovian evolution of such a quantum system:

i∂tψ(t) = H(t)ψ(t) +

∫ ∞
0

U(τ)ψ(t− τ)dτ , (1)

whereH(t) = H(t+T ) is a time periodic Hamiltonian and
U is a memory kernel that captures the non-Markovian
effects in the system. At this point, consider Eq. (1)
as a mathematical object. In the next sections we will
motivate this form and give it a physical interpretation.
Since Eq. (1) is invariant to time translations by T , its
solutions have a Floquet form,

ψ(t) = e−iηt
∞∑

n=−∞
φne

inωt, (2)

where ω = 2π/T , and φn is the Floquet amplitude for an
electronic state dressed by n photons. In contrast to the
Markovian case, Eq. (1) does not preserve the norm of
ψ, and therefore η is a general complex number. Eq. (2)
and Eq. (1) yield the following equation for the Floquet
amplitudes,

ηφn =
(
ωn+ Fn(η)

)
φn +

∑
m

Hn−mφm, (3)

where Fn(η) =
∫∞
0

dτU(τ)eiτ(η−nω) and Hn =∫ T
0

dτ
T H(t)e−inτω. Unlike standard tight-binding models,

Eq. (3) is a transcendental eigenvalues equation and the
number of independent solutions depends on the exact
form of Fn and H.

For simplicity, we restrict our discussion to memory
kernels of the form: U(t) = Θ(t)Θ(T − t)u(t)/T , where
Θ is the Heaviside function, and u(t) is periodic in t with
period T . This form implies that the memory is causal
and goes back only up to a single period of the drive. In
this case the memory kernel is fully defined by un, the
Fourier components of u(t) in the range t ∈ [0, T ]. In
terms of un, F is given by:

Fn(η) =
∑
l

ul
T

∫ T

0

eiτ(η+(l−n)ω)dτ . (4)

un plays the role of a potential energy in photon space.
The scale of un characterizes the coupling of the system
to its memory.

Consider a concrete problem of a two-level system
(TLS) in the presence of a single frequency drive. From
this, we will construct a 1D topological phase. Start with:

H(t) =
(
µ− cos (ωt)

)
σz + sin (ωt)σx, (5)

here σi are the Pauli matrices and µ is a positive param-
eter. We choose the memory kernel such that [39]:

un = −ωnΘ(n0 − |n|)σ0 + δΘ(n1 − |n|)σz, (6)

where σ0 is the identity matrix and δ is a real parameter.
In order to compete with the artificial electric field which

appears in the first term on the r.h.s. of Eq. (3), the
memory coupling should be of order ωN , where N is the
extent of the flat region we would like to have. In addi-
tion, δ sets the scale of the n-space confinement potential,
which in turn, sets the extent of the boundary states. The
smaller this extent is, the better defined wave-packets
could be created along the edge. From Eq. (5, 6, 3) we
find,

ηφn =
(
ωnΘ(|n| − n0)σ0 + F̃n(η)

)
φn (7)

+ µnσzφn −
σz + iσx

2
φn+1 −

σz − iσx
2

φn−1,

where F̃n(η) = Fn(η) − un and µn is µ + δ for |n| ≤ n1
and µ otherwise.

The last three terms in Eq. (7) describe a 1D SSH (Ki-
taev) chain [40, 41] with a jump in the topological mass at
n = ±n1. For |µ| > 1 and |δ+µ| < 1, the region between
n = ±n1 is in the topological phase while the exterior is
in a trivial phase. The spectrum arising from these three
terms alone is gapped along with two zero energy states
which are localized in n space around n = ±n1. The
first term in Eq. (7) describes a constant electric field
which is perfectly screened in the region |n| < n0. For
n1 � n0, the low energy states are indifferent to that
field, and we may assume for simplicity that n0 → ∞,
i.e., the electric field is perfectly screened. In that limit
and for η = 0 and F̃n(η) = 0, Eq. (7) describes a zero
energy Kitaev chain which, as explained above, has two
solutions which are localized in n space around n = ±n1.
We find two solutions which are localized at the edges
of the synthetic direction. The n space wave functions
of these two solutions are depicted in Fig. 1b, and they
are given by: ψ±(t) ≈ φ±n1

e±in1ωt. For n0 < n1 we find
that the zero energy modes split away from zero, and
therefore, are not exact solutions of the equation. For a
general η = x + iy 6= 0, the spectrum of the right-hand-
side of Eq. (7), λi, may be found for each value of η. Only
eigenstates with η = λi are true solutions of Eq. (7). We
verified numerically that there are no other solutions in
the range x, y ∈ [−0.5, 0.5]ω, hence, the two solutions
with η = 0 are gapped in the complex plane from other
(bulk) solutions.

This example demonstrates how to construct a syn-
thetic dimension using the photon number as a lattice
degree of freedom. The inclusion of a memory kernel al-
lowed us to introduce potentials, and in particular, edges
in the synthetic dimension. We now add another dimen-
sion to find a collection of eigenfunctions of the dynamical
equation.

1+1 dimensional model. We construct a 2D model
which consists of one real and one synthetic dimension.
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We start with:

i∂tψx(t) =
∑
x′

Hx−x′(t)ψx′(t)+

T∫
0

dτ

T
ux−x′(τ)ψx′(t− τ),

(8)
where x is a lattice coordinate, H(x − x′, t) is a time-
periodic tight-binding Hamiltonian and u is the memory
kernel. For periodic or infinite systems in the real dimen-
sion, Eq. (8) can be written in Fourier space:

i∂tψ(k, t) = H(t, k)ψ(k, t) +

∫ T

0

dτ

T
u(k, τ)ψ(k, t− τ).

(9)
We choose u(k, τ) = u(τ)e−iv0kτ , where u(τ) is again
given by Eq. (6), and v0 is a real parameter. As before,
the solution has a Floquet form and Eq. (9) becomes:

ηkφn(k) =
(
ωn+Fn(ηk−v0k)

)
φn(k)+

∑
m

Hn−m(k)φm(k)

(10)
where Fn is as in the previous section.

We generalize the Hamiltonian of the zero dimensional
case [42, 43]:

H(t) =
(
µ−cos (ωt)−cos (k)

)
σz+sin (ωt)σx+v0 sin (k)σy.

(11)
Taking the limit n0 →∞ and trying solutions with ηk =
± |v0| k yields the following eigenvalues equation,

±v0kφn,k =
[(
µn − cos(k)

)
σz + v0 sin (k)σy

]
φn,k

− σz + iσx
2

φn+1,k −
σz − iσx

2
φn−1,k. (12)

The right hand side of Eq. (12) is a tight-binding model
of a Chern insulator on a cylinder in the x−n plane. The
Chern number changes from 1 to 0 at n = ±n1. Similar
to a quantum Hall (QH) state on a cylinder, there are
no low-energy states in the 2D bulk, while for each k,
two chiral solutions with energy εk = ±v0k exist near
the edges at n = ±n1. Hence, we found a set of solutions
labeled by k:

ψk,±(x, t) ≈ eikx±iv0ktφk,±n1e
±in1ωt. (13)

The solutions may be superposed to construct a wave
packet, with a fixed number of photons, that propagates
without dispersion along the 1D chain. Similar to a 2D
quantum hall state, where back-scattering is allowed only
if a particle tunnel to the opposite edge, here, back-
scattering is possible only if the number of photons in
the dressed states is changed by 2n1. If the scatterer
cannot take or supply photons, then the probability for
that processes is exponentially small in the system “size”
in photon space (determined by the n1).

To add edges in the real direction, Eq. (10) can be
transformed back to real space and may be solved nu-
merically. As in the periodic case, a set of solutions with
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FIG. 2. (a) 1 + 1D case: The absolute square of the solution
to Eq. (10) with η = 0, along with the synthetic field and the
gap parameter. At low energies, the system supports QH-like
edge states in the combined x − n space (n0 = 48, n1 = 35,
µ = 10, δ = −9.9). (b) The cycle that a system of spinful
particles performs. Spin up (down) denotes full (empty) site.
The system evolves along the state which is depicted in (a).
Along the left/right real space edge the system emits/absorbs
photons while along the top/bottom n space edge the system
supports left/right propagation.

real η exists. Analogous to a QH state in a rectangular
geometry, there are no low-energy states in the 2D bulk,
while a set of chiral solutions, labeled by their energy η,
exists along the circumference of the 2D sample. Here,
the circumference has both real and synthetic segments
near the real edges of the chain and n = ±n1. A typical
solution is shown in Fig. 2a, and it is clearly concentrated
along the edges of the combined 2D system. As expected
from the QH analogy, the solutions are propagating plane
waves along the circumference. Indeed, we find numeri-
cally that the solutions on the left/right real space edges
have the form ψηl/r(t, n) ∝ eiη(t±ξn) where ξ is a con-

stant that depends on the details of the edge potential.
Constructing a wave packet of different energy solutions
around the left/right edge yields, Ψl/r(n, t) ∝ A(±ξn−t),
where A is an envelope function tightly centered around
zero. As long as −n1 < n < n1, a wave packet which is
localized near the left (right) edge adsorbs (emits) pho-
tons from (to) the drive at a constant rate ξ−1. Overall,
the wave packet performs a cycle in the x − n plane. If
a wave packet with a well defined number of photons,
n1, is prepared in the bulk of a 1D chain, then it moves
at a constant velocity and without dispersion toward the
right edge. At the edge it emits photons at a constant
rate until it reaches n = −n1. It then moves toward
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FIG. 3. (a) The system in Eq. (14, 15). φ represents a pseudo-
spin degree of freedom which is coupled to a chiral field ψ.
The effective evolution of φ follows Eq. (1). (b) The one
dimensional version of (a). Placing a 1D lattice of the system
in (a) and introducing couplings between the different TLS
yields an effective model for the φ field that obeys Eq. (8).

the opposite edge where it absorbs back photons from
the drive until n = n1 again, and therefore completes a
cycle. Fig. 2b illustrates such a cycle for a chain with
an internal pseudospin degree of freedom. In the sup-
plementary material (SI) [44] we describe a local-in-time
framework in which the dynamics of these systems may
be simulated efficiently.

Implementation. A dynamical equation of the form of
Eq. (1) could be engineered by using an auxiliary subsys-
tem. Consider a two-level system, described by φ(t) and
governed by Hφ(t), which is coupled to a one-dimensional
field, ψ(x, t), which is governed by Hψ(x̂) and lives on a
line that swirls around the two-level system (Fig. 3a).
The fields’ dynamics are given by [45]:(

i∂t −Hφ(t)
)
φ(t) = −

∫
dxλ(x)ψ(x, t) (14)(

i∂t −Hψ(x̂)
)
ψ(x, t) = −λ†(x)φ(t) (15)

where the coupling, λ(x), is non-zero for 0 < x < 2πL
with L being the length of the swirl and x = 0 is its
the starting point. The second equation may be solved
formally by introducing Gψ, the Green function of the
operator i∂t −Hψ(x̂). Plugging the formal solution back
yields an equation for φ similar to Eq. (1), where the
memory kernel is given by:

U(t− t′) =

∫
dxdx′ λ(x)Gψ(t− t′, x− x′)λ†(x′). (16)

For concreteness see Fig. 3a, where the 1D field, ψ, is
realized by a quantum Hall chiral edge. Thus, Hψ(x̂) =
−iv0∂x, the Green function is Gψ(t, x) = iΘ(t)δ(x− v0t),
and

U(t) ∼ Θ(t)Θ(T − t)
∑

n,m 6=n

2Re(λm λ
†
n)

2π(n−m)
einω0t, (17)

where λl are the Fourier components of λ(x). Eq. (17)
has the general form of the memory kernel that we con-
sidered in the previous sections. Hence, ω0 and λ(x) may
be controlled to produce the desired u(t).

In the SI [44] we discuss specific choices of λ(x) that
yield the desired potential and edges discussed above.
The ability to generate these λ(x) may be achieved by
means of lithography. Using the fact that the coupling
of the edge mode and the two-level system is distance
sensitive, a particular λ(x) could be engineered by pat-
terning the edge that comes in contact with the two-level
system, as illustrated in Fig. 3. The distance, and there-
fore also the coupling, between the edge and the two-level
system would then be angle-dependent. The resolution
of the patterning would determine the level of control
and the ability to achieve more complicated potentials in
photon space. Modern nano-lithography methods, such
as electron-beam lithography, allow fine patterning to a
level of a single nanometer. Overall, the desired forms of
λ(x), which are presented in the SI, may be effectively
approximated.

The setup in Fig. 3a reproduces the physics of Eq. (1).
The one-dimensional physics of Eq. (8) may be ap-
proached by placing a 1D array of these building blocks
and introducing couplings between the different two-level
systems as illustrated in Fig. 3(b). In this example, the
edge of the quantum Hall state is replaced by the surface
of a Weyl semimetal (WSM) which supports a chiral 2D
surface state. Similar to the 1D case, a spatial resolution
may be achieve by “etching” patterns on the surface of
these materials. In this example, each site has two or-
bitals corresponding to the spin or pseudospin quantum
number, which could be either full or empty. If a 1D
system is prepared such that only the most left TLS is
occupied and the drive is turned on rapidly at t = 0, then
the system is in a localized state near the left edge and
near n = 0 and it should evolve according to the cycle in
Fig. 2b.

Conclusions. In this manuscript we introduced a new
tool for controlling a system’s motion and effective poten-
tial along synthetic dimensions introduced due to a peri-
odic drive. By introducing a memory kernel, the poten-
tial along a synthetic dimension can be controlled for a fi-
nite energy window. In particular, the drive-induced syn-
thetic dimension can possess edges that could host chiral
topological states. We expect that the memory-assisted
dynamics could be used as a control tool in broader con-
texts, possible to protect quantum states from external
noise, or to induce through feedback a desirable target
state.

The use of memory for inducing synthetic dimensions
edge states could have applications in controlling the flow
of light, and in particular its direction. These are key
for integrated optical circuits, as nonreciprocal optical
devices, like optical diodes (isolators) have the poten-
tial to largely outperform their electronic counterparts
[46]. Such devices require time-reversal symmetry break-
ing. In Faraday isolators, for instance, time-reversal is
broken by the existence a magnetic field. Our construc-
tion may serve as a frequency-dependent isolator that
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does not require an external magnetic field. The chiral
nature of this phase provides the necessary ingredient,
and it emerges from the circular polarization of the drive
source. At low energies, the 1D system in Eq. (8) sup-
ports states in which photon absorption is possible only
along the left edge, photon emission is possible only along
the right edge and no emission or absorption are possi-
ble in the bulk. By connecting the system to input and
output ports and injecting light at frequency which is an
integer multiple of ω, the system behaves as an isolator
[47]. Also, a combination of the surface states of a Weyl-
semimetal with spin orbit coupled wires could provide a
physical realization of such an isolator. We defer a dis-
cussion of the specifics of such a system, as well as other
potential applications of memory-based quantum control
to future work.
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