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Long wavelength vibrational modes in the ferromagnetic semiconductor Ga0.91Mn0.09As are in-
vestigated using time resolved x-ray diffraction. At room temperature we measure oscillations in
the x-ray diffraction intensity corresponding to coherent vibrational modes with well defined wave-
lengths. When the correlation of magnetic impurities sets in, we observe transition of the lattice into
a disordered state which does not support coherent modes at large wavelengths. Our measurements
point toward a magnetically-induced broadening of long wavelength vibrational modes in momen-
tum space and their quasi-localization in the real space. More specifically, at long wavelengths
vibrational modes cannot be assigned to a single wavelength but rather should be represented as
a superposition of plane waves with different wavelengths. Our findings have strong implications
for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which
govern the electrical conductivity and thermal management of semiconductor-based devices.

PACS numbers: 63.70.+h, 63.20.Pw, 61.05.cp

Impurity atoms play an important role in condensed
matter physics, in particular, in the nature of lattice vi-
brations. They typically perturb the crystal Hamiltonian
by producing an alternation in the kinetic energy of the
ions due to a mass difference relative to the host and by
modifying the force constants around the impurity atom
[1, 2]. Hence, the vibration modes are expected to be
modified from their usual sinusoidal wave forms which
consequently lead to important implications for the ther-
mal and electrical properties of the host crystal, in par-
ticular, heat conductivity and carrier mobility [3]. This is
of vital importance for electronic devices whose minitur-
ization not only increases the processing rate but also the
quantity of heat which, subsequently, might lead to large
thermal loads and device failure. In context of materials
with large technological relevance, semiconductors doped
with magnetic impurities, commonly known as diluted
magnetic semiconductors (DMS), open up new prospects
for extending the information processing and storage be-
yond conventional electronics by merging the long-range
magnetic ordering characteristic of ferromagnets with the
versatile properties of conventional semiconductors [4, 5].
The large number of magnetic impurity atoms needed to
mediate the ferromagnetic coupling (∼ 2.2 × 1020 cm3)
will considerably affect the traveling-wave-nature of the
host-crystal normal modes and phonon transport. In

contrast to amorphous and disordered solids where lo-
calized and quasilocalized modes have been extensively
studied and debated [1, 2, 6–13], the experimental work
on doped semiconductors with correlated impurities re-
mains scarce. Motivated by this fact, our objective was to
observe how phonon modes in DMSs develop and evolve
when magnetic moments interact with each other.

We have probed the vibrational modes of the laser ex-
cited Ga0.91Mn0.09As by time-resolving the scattering of
x-rays by phonons [14, 15]. At room temperature all
components of an impulsively generated acoustic phonon
pulse are traveling wave normal modes with well defined
wave vector q. When coupling of magnetic impurities sets
in, long wavelength components of the acoustic pulse are
profoundly affected. The length-scale and temperature
dependence of x-ray diffraction waveforms indicate that
magnetic correlation of randomly distributed impurities
quasilocalizes the long wavelength vibrational modes. In
contrast to amorphous solids and crystalline solids with
heavy impurities [1, 6, 12], sinusoidal displacement pat-
terns of vibrational modes are destroyed by the phase
shifts at the impurity atoms rather than extra displace-
ment amplitudes. The experiments were performed at
the X-Ray Pump-Probe (XPP) Instrument, Linac Co-
herent Light Source (LCLS) X-ray FEL [16]. An ultra-
short (50 fs) near infrared (800 nm) laser pulse excites
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FIG. 1. Measurements (filled circles) and simulations (solid
lines) of time dependent x-ray diffracted intensity from
Ga0.91Mn0.09As. Panels A, B and C show data measured
at room temperature whereas panels D, E and F, at 60 K.
The data have been compared with predictions of dynamical
theory of x-ray diffractions that assume acoustic modes with
well-defined spatial periodicity q (red solid lines). The black
solid line in panel D represents a damped elastic wave with
q = 0.018 π/a, ωq = 2π/(19 ps) and damping time constant
τ = 12 ps.

coherent acoustic phonon modes [17–20] in a 1 µm thick
Ga0.91Mn0.09As film with a Curie temperature Tc ≈ 90
K [21]. A nominally 50 fs, 10.363 keV x-ray pulse, just
below the Ga K-edge energy, is used to probe the sample
(see Supplemental Material, Section A, which includes
Refs. [16, 21–28]). Any phonon-induced periodicity in
the lattice with a period λq = 2π/q will introduce side-
bands to the rocking curve peak, at an angular separa-
tion ∆θ ∝ q from the Bragg peak, which oscillate at the
phonon frequency ωq (see Supplemental Material, Section
B, which includes Refs. [17–20, 29]).

In Fig. 1, panels A-C, we show the time dependent
diffracted intensity from Ga0.91Mn0.09As (004 reflection)
at room temperature, probing spatial periodicities q =
0.015 π/a, 0.012 π/a, and 0.010 π/a, respectively, with
a = 5.673 Å being the lattice constant of Ga0.91Mn0.09As
[30]. Distinct temporal oscillations are observed which
correspond to coherent acoustic phonons at frequencies
ωq = 2π/(22 ps), 2π/(28 ps), and 2π/(31 ps), respec-
tively. A Fourier transform of the data gives the disper-
sion relation for the longitudinal acoustic branch with
a speed of sound vs,exp = 3400 ± 400 m/s for longitu-
dinal acoustic modes propagating along the [001] direc-
tion, with the error bar resulting from the uncertainty in
the determination of rocking curve peak. This value is
smaller than the sound velocity in GaAs, vs,GaAs = 4780
m/s due to the charge redistribution in the host crys-
tal induced by the doping [31]. Extrapolating the spin

FIG. 2. The temperature dependence of the measured time
dependent diffracted intensities probing the acoustic mode
q = 0.015 π/a. The data for different temperatures have been
shifted along the intensity axis for better visibility. Inset: the
measured magnetization curve (left) and, the inverse of the
damping time (diamonds, right) and calculated susceptibility
(solid line, right) [35].

polarized density-functional-theory calculations of elastic
constants to a doping density of x = 0.09 [31], we obtain
vs = 3800 m/s, which agrees well with our experimental
value. These data confirm that the probed phonon modes
can be described by elastic waves having a well-defined
spatial periodicity, implying thus that q is a good quan-
tum number. The data compare well with simulations
that model dynamical x-ray diffraction in the presence of
strain. Here, the rocking curves have been calculated for
a particular strain profile using the method given by Wie
et al. [32], whereas the strain has been calculated using
the model of Thomsen et al. [33] extended to include the
lattice heating time [20, 34]. The damping of the oscil-
lations results from the dephasing due to the wavevector
resolution limit of the probe beam.

The key observation of our work becomes obvious
from the data depicted in Fig. 1, panels D, E, and F,
where time dependent x-ray diffraction intensities mea-
sured at temperature T ≈ 60 K but the same laser
fluence as previous measurements at room temperature
are reported. We show normalized intensities which
probe acoustic phonon modes with spatial periodicities
q = 2π/λq = 0.018 π/a, 0.015 π/a and 0.012 π/a, re-
spectively. The data are compared with predictions of
dynamical theory of x-ray diffractions, similar to those
used to simulate the room temperature measurements,
and assume thus acoustic modes with well-defined spatial
periodicity q. The data measured at q = 0.018 π/a re-
semble the form of a damped elastic wave with frequency
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ωq = 2π/(19 ps) and damping time constant τ = 12 ps
(black solid line in Fig. 1D), indicating that the q-vector
is still a good quantum number. The mode at q = 0.015
π/a shows temporal oscillations at ωq = 2π/(22 ps) how-
ever with quenched amplitude (Fig. 1E). Time depen-
dent diffracted intensity probing the spatial periodicity
q = 0.012 π/a (Fig. 1F) has a waveform that is markedly
changed compared to that of an elastic wave with de-
fined q-vector. In effect, only the first half-period of the
oscillation is observed. Evidently, the measured time-
resolved diffraction depends on the ferromagnetic order-
ing of Mn spins; Figure 2 shows a typical critical be-
havior of the mode q = 0.015 π/a with temperature as
an example which demonstrates the dependence of mea-
sured time dependent x-ray diffraction on the magnetic
correlation of impurities. The data resemble a critical
behavior around Tc similar to that observed in the sus-
ceptibility [35, 36], resistivity [37] and heat capacity [38],
indicating thus a dependence on the spin-spin correlation
function Γ(S0,S1) = 〈S0S1〉− 〈S0〉〈S1〉. The damping of
oscillations (see right inset) is related to the scattering
of phonons from spin fluctuations with a cross section
scaling as [Tc/(T − Tc)]

5/3 ( Ref. 39) [40].

From Fig. 1 (D-F), it is evident that during the first
16 ps following the photoexcitation, the measured data
match well the simulations, indicating that in this time
scale the lattice is still in the state which allows travelling
wave normal modes. This observation also implies that
the initial excitation of coherent acoustic phonons is pro-
vided by the same mechanisms as that at room tempera-
ture. The loss of coherence in Figs. 1E and 1F cannot be
explained in terms of phonon-defect and phonon-phonon
scatterings since both processes, having scattering rates
that increase with q [41], should affect large q-modes in-
stead of small q-modes, contrary to our observations.

While at room temperature the acoustic pulse could be
well described in terms of traveling wave normal modes,
time dependent x-ray diffraction measured around and
below Tc indicates transition of the lattice into a disor-
dered state which does not support propagation of long-
wavelength phonon modes. The length-scale dependence
of x-ray diffraction waveforms in Figs. 1 (D-F) sug-
gests a spatial distortion of the vibrational modes. The
reversibility and reproducibility of this effect has been
checked by recording each time scan twice and by mea-
suring the same data set at a higher laser fluence. In
terms of modeling, the solid cannot be treated as con-
tinuum medium. However, a qualitative description that
captures the physics observed here can be obtained by
considering the equation of motion for acoustic modes
in the presence of spin-phonon interaction (see Supple-
mental Material, Sections C and D, which include Refs.

FIG. 3. Eigenvectors of a linear chain of atoms with randomly
distributed impurities. Panels A and B show a schematic
drawing of a mode eigenvector without and with magnetic
correlation of spins, respectively. In A, mode eigenvectors
can be described by a sinusoidal wave with a well-defined
wavelength λq. In B, ferromagnetic coupling of randomly dis-
tributed magnetic impurities leads to a destruction of a sinu-
soidal pattern of a vibrational mode. The average distance be-
tween two phase interruptions is represented by the coherence
length Λq . Panel C shows a simulated mode q = 0.018 π/a
eigenvector without spin-phonon interaction (∆kmag = 0),
whereas panel D displays modification of the mode eigenvec-
tor when the magnetic contribution to the spring constants
around impurities has been set to ∆kmag = −24.7 meV/Å2.
Panel E shows the Fourier transform power spectrum of se-
lected acoustic mode eigenvectors and panel F compares the
dispersion relation with that of the unperturbed crystal.

[1, 33, 42–48]),

mj
∂2u

∂t2
=kα(uj+1 − uj) + kβ(uj−1 − uj)

+r∆kmag(ui+1 − uj) + r∆kmag(ui−1 − uj)(1)

This equation represents a linear chain composed of
N masses mj connected by springs with effective force
constants kα and kβ . Here, mj stands for the mass of an
atom (Ga, As or Mn) in the unit cell (see Supplemental
Material, Sections D), uj denotes the displacement at the
depth zj = jz and, kα and kβ are the effective force con-
stants between the layers (j, j +1) and (j, j − 1), respec-
tively. Spin-phonon interaction arises due to the mod-
ulation of the exchange constant by phonons and adds
a magnetic contribution ∆kmag ≈ −J ′′(u)〈S0S1〉 to the
spring constants of magnetic impurity atoms, with J ′′(u)
being the second derivative of the exchange interaction
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with the phonon coordinate and 〈S0S1〉 the two-spin cor-
relation function [42]. In (Ga,Mn)As with a nominal Mn
doping of 9%, a fraction of Mn is incorporated in in-
terstitial positions [27]. Assuming that interstitial atoms
form pairs with substitutional Mn atoms, the partial con-
centrations of substitutional and interstitials impurities,
xs ≈ 5.5% and xi ≈ 3.5%, respectively (see Supplemen-
tal Material, Section A), yield xs,eff = xs − xi = 2%
uncompensated Mn moments. In contrast to glasses
where a random distribution of spring constants is as-
sumed [13], here we use fixed springs constants which
are modified by the spin-phonon interaction only at the
Mn atoms. Figure 3 shows the effect of spin-phonon
interaction in the long-wavelength acoustic modes pre-
dicted by Eq. (1). In a system which has no ferro-
magnetic correlations, ∆kmag = 0, the eigenvectors have
a harmonic spatial dependence allowing thus a single q
to be associated with each frequency ωq, Fig. 3(A,C).
When ∆kmag = −0.018(kα + kβ)/2 ≈ −24.7 meV/Å2

(i.e. the impurity atoms are ferromagnetically coupled),
with kα = 25 N/m and kβ = 19 N/m obtained by (a)
matching the simulated and measured dispersion rela-
tions and (b) by setting the zone boundary phonon fre-
quencies ωLO(X) − ωLA(X) = 2π(0.4) THz (ωLO and
ωLA are the longitudinal optical and acoustic phonon
frequencies at the X point of the Brillouin zone)[49], low
frequency modes are profoundly affected, Fig. 3 (B, D)
[50]. The eigenvectors cannot be assigned to a single q
but rather should be represented as a superposition of
plane waves with different q’s, or equivalently, the same
frequency is carried by several plane waves with differ-
ent wavevectors. This happens because the spin-phonon
contribution on the spring constants ∆kmag alters the
inertia of the magnetic impurities. Consequently, the
host atoms will adopt a mode pattern which is neces-
sary to balance the forces with neighboring atoms. The
Fourier transform power spectrum of some selected mode
eigenvectors averaged over 100 random configurations is
shown in Fig. 3E. As q is decreased, the eigenvectors
expand in the reciprocal space and acquire thus a width
∆q, and quasi-localize in the real space. The width of vi-
brational modes ∆q increases monotonically with ∆kmag

but not with the doping level x (see Supplemental Ma-
terial, Section E). A minimum doping level which af-
fects considerably the periodicity of the vibration modes
is ∼0.5%. Figure 3F compares the dispersion relation
of a perturbed chain, obtained by mapping the Fourier
power spectrum of mode eigenvectors as a function of
mode frequency (intensity pot), with the linear relation
ωunpert.(q) = vsq (blue dashed line). When q-space
broadening is neglected, the dispersion curve (filled cir-
cles) deviates from the liner relation only for low q-modes
whose spatial periodicity is significantly affected. Below
a cutoff wave vector qc the dispersion flattens (the mode
frequency becomes imaginary) and the spatial periodic-
ity of the lattice cannot be sampled anymore. In these

FIG. 4. Simulated coherence length as a function of wave
vector q. The critical coherence length Λcrit

q marks the region
below which the coherence length of the mode q, Λq , is smaller
than the wavelength λq = 2π/q. In this region phonons can-
not sample the periodicity of the lattice and the wave vectors
cannot rationalize them anymore. Blue triangles represent
the oscillation amplitudes of the x-ray diffraction signal mea-
sured at 60 K normalized to those at room temperature. The
data corresponding to the acoustic modes 0.018 π/a and 0.015
π/a follow the functional dependence of Λq(q) multiplied by
a constant factor.

simulations we have omitted the reduction of force con-
stants on each side of the interstitials. Different scenar-
ios including various interactions such as force constant
reduction and the presence/omission of antisites are dis-
cussed in the Supplemental Material, Section F, which
includes Refs. [1, 9, 51].

From the widths ∆q we can define the coherence
length, Λq = 2π/∆q, which describes the average dis-
tance between two phase interruptions in the mode eigen-
vector, see Fig. 3B. A critical coherence length Λcrit

q ≈
2π/qc marks a region below which the coherence length
of the mode Λq is smaller than the wavelength λq, see
Fig. 4. When Λcrit

q < λq, phonons see a disordered sys-
tem and cannot sample the periodicity of the lattice. In
this context, the wave vector is not a well-defined quan-
tity anymore. In Fig. 4 we compare the oscillation am-
plitudes of the x-ray diffraction signal measured at 60
K normalized to those at room temperature [i.e., Aq(60
K))/Aq(300 K)]. The data corresponding to the acoustic
modes 0.018 π/a and 0.015 π/a follow the functional de-
pendence of Λq(q). The long wavelength acoustic mode
q = 0.012 π/a, on the other hand, cannot be assigned
to a waveform that would describe coherent oscillation
in the x-ray diffraction signal as the wavelength of this
mode, λq = 2π/q = 167a, is close to the critical co-
herence length Λcrit

q ≈ 162a. As a result, this acoustic
mode loses its coherence faster than other high-q modes
and in this way it contributes to a diffusive background
rather than to the oscillatory signal, in agreement with
our measurements.

In conclusion, our measurements show that in fer-
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romagnetic semiconductors with randomly distributed
magnetic impurities, spin-phonon interaction affects sig-
nificantly the long wavelength acoustic modes. The
length scale dependence of measured x-ray diffrac-
tion waveforms cannot be explained by invoking
phonon-defect and phonon-phonon scatterings mecha-
nisms which, having rates that increase with decreasing
phonon wavelength [41], have less pronounced effects at
long wavelength modes. Instead, they can be consistently
interpreted in terms of magnetically-induced quasilocal-
ization of vibration modes. By altering the inertia of
randomly impurity-atoms, spin-phonon interaction de-
stroys the harmonic displacement pattern of long wave-
length vibrational modes. This observation will have im-
portant implications on many properties of these mate-
rials in which lattice vibrations participate, in particu-
lar, heat transfer since quasilocalzation of modes con-
tributes to the confinement of thermal energy rather than
to its distribution. It will also contribute to the un-
derstanding of many physical processes such as carrier-
phonon, impurity-phonon and phonon-phonon scatter-
ing whose scattering rates are typically estimated by as-
suming harmonic displacement patterns of normal modes
[41, 52, 53].
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[51] J. Mašek et al., Phys. Rev. B 67, 153203 (2003).
[52] B. K. Ridley,Quantum Processes in Semiconductors (Ox-

ford University Press, 1999) Chap. 3.
[53] P. L. Taylor and O. Heinonen, A Quantum Approach to

Condensed Matter Physics (Cambridge University Press,
Cambridge, 2002).

[54] C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 96, 205505
(2006).


