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We present results from a three-dimensional particle-in-cell simulation of plasma turbulence, re-
sembling the plasma conditions found at kinetic scales of the solar wind. The spectral properties of
the turbulence in the sub-ion range are consistent with theoretical expectations for kinetic Alfvén
waves. Furthermore, we calculate the local anisotropy, defined by the relation k‖(k⊥), where k‖ is
a characteristic wavenumber along the local mean magnetic field at perpendicular scale l⊥ ∼ 1/k⊥.
The sub-ion range anisotropy is scale-dependent with k‖ < k⊥ and the ratio of linear to nonlin-
ear time scales is order unity, suggesting that the kinetic cascade is close to a state of critical
balance. Our results compare favorably against a number of in-situ solar wind observations and
demonstrate—from first principles—the feasibility of plasma turbulence models based on a criti-
cally balanced cascade of kinetic Alfvén waves.
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Introduction.—Many space and astrophysical plasmas
are found in a weakly collisional turbulent state, with
prominent examples ranging from the solar wind [1], to
more distant astrophysical environments such as accre-
tion disks [2–4], galaxy clusters [5, 6], and the interstellar
medium [7, 8]. In low collisionality plasmas, the fluid-like
inertial range energy cascade transitions into kinetic tur-
bulence at the ion kinetic scales, with important implica-
tions for the turbulent heating of ions and electrons, and
for the (bulk) transport properties of the plasma [2, 9–
14]. The nature of the kinetic-scale plasma turbulence
is, however, still a matter of debate [10, 11, 15–25]. The
most detailed observational data originate from in-situ
solar wind measurements [20, 24–32], which thus pro-
vide the most stringent constraints for the theoretical
predictions [10, 11, 33–36]. Spacecraft measurements
have shown that the solar wind is highly turbulent, dis-
playing power-law fluctuation spectra over a broad range
of scales [1, 37, 38]. In the inertial range, above the
proton kinetic scales, the magnetic energy follows an

E(k⊥) ∝ k
−5/3
⊥ wavenumber spectrum in directions per-

pendicular to the local mean magnetic field, whereas
the inferred spectrum parallel to the local mean field is
steeper: E(k‖) ∝ k−2

‖ [39–41]. Thus, solar wind tur-

bulence is anisotropic. At kinetic scales, a break in the
inertial range spectrum is observed, followed by a steeper
power law with a spectral exponent around −2.8 at sub-
proton scales [28, 29] for wavenumbers nearly perpen-
dicular to the mean field. Turbulence at kinetic scales
remains anisotropic [29, 42], although presently available
measurements limit the accuracy to which one can deter-
mine the kinetic-scale anisotropy.

An elegant explanation for the development of scale-
dependent anisotropy can be given in terms of the crit-
ical balance conjecture [10, 11, 35, 38, 43–47]. This
states that even when the turbulent plasma dynamics
is strongly nonlinear, certain properties of linear wave

physics are maintained, such that the nonlinear time at
each scale is comparable to the characteristic time of
the relevant linear mode. Therefore, linear theory may
be used to aid theoretical predictions even in strongly
turbulent regimes. In the inertial range of solar wind
turbulence, most fluctuations display properties consis-
tent with Alfvén waves (e.g. Refs. [27, 48]), thus mo-
tivating the use of magnetohydrodynamics (MHD) at
scales larger than the proton gyroradius. On the other
hand, the question regarding the most relevant linear
modes in the kinetic range of the solar wind has been the
subject of some controversy [10, 17–20, 24, 35, 49, 50].
The leading two wave-like models of kinetic-scale turbu-
lence are presently the kinetic Alfvén wave (KAW) tur-
bulence model [10, 11, 35] and the whistler wave tur-
bulence model [33, 34, 51–54]. Upon balancing the lin-
ear wave crossing time with the nonlinear time, critical
balance for both types of modes (KAWs and whistlers)

predicts an anisotropy given by k‖ ∝ k
1/3
⊥ , assuming

that possible corrections due to intermittency and dis-
sipative effects can be neglected [10, 11, 52]. Here, k‖
should be understood as a characteristic wavenumber
along the local mean magnetic field [44] at perpendic-
ular scale l⊥ ∼ 1/k⊥. Observational evidence suggests
that the kinetic-scale fluctuations are predominantly of
KAW type [20, 27, 29, 31], although there also exists
some evidence in support of whistler waves [24, 55].

Complementary to observations and theory, numerical
simulations of kinetic-scale solar wind turbulence have at-
tracted a great deal of interest [15, 21, 22, 49, 53, 56–70].
However, capturing the entire range of kinetic physics in
a turbulent simulation has proven difficult due to the im-
mense computational requirements of the problem. For
this reason, a number of previous works employed various
simplifications of the first principles kinetic description
in three spatial dimensions. These simplifications typi-
cally involve various reduced-kinetic approximations [15,
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21, 60, 64, 69] and/or restrictions to a two-dimensional
geometry [21, 49, 53, 58, 63, 70]. Only recently have
fully kinetic, three-dimensional (3D) simulations become
computationally accessible [22, 61, 67, 71, 72]. Previ-
ous works employing 3D fully kinetic simulations were
aimed at different aspects such as whistler wave turbu-
lence [61, 67], intermittent heating [22], particle accelera-
tion in the highly relativistic regime [71], or bulk plasma
heating by KAW turbulence [72]. Thus, even though
there exists observational evidence for the transition into
KAW turbulence at kinetic scales [20, 27, 29, 31], supple-
mented by evidence of critical balance in gyrokinetic [46],
electron MHD [52, 56], and Landau fluid simulations [73],
the natural occurrence of the transition has to our knowl-
edge never been convincingly demonstrated in a 3D fully
kinetic simulation.
In this Letter, we try to fill in a long-standing gap in

the literature, and perform a 3D fully kinetic plasma tur-
bulence simulation in order to demonstrate the feasibility
of the critically balanced KAW turbulence model from
first principles. Using a simulation setup broadly resem-
bling the typical conditions at the tail of the MHD iner-
tial range and at sub-ion scales of the slow solar wind, we
show that the ratios of the turbulent spectra between ion
and electron scales are consistent with theoretical expec-
tations for KAWs. Furthermore, we perform a first-time
direct calculation of the local scale-dependent anisotropy
in a 3D kinetic simulation of sub-ion-scale plasma turbu-
lence. From the anisotropy, we infer the ratio of linear to
nonlinear time scales and obtain an order unity estimate
in the sub-ion range, suggesting that the kinetic cascade
is close to a state of critical balance.
Simulation details.—The triply-periodic simulation

box dimensions in units of the ion inertial length di are
L⊥ = 16.97di and Lz = 42.43di in directions perpen-
dicular and parallel to the mean magnetic field B0 =
B0êz, respectively. The initial condition is similar to
the one used in Ref. [74] and consists of counterpropa-
gating Alfvén waves with wavenumbers (k⊥,0, 0,±kz,0),
(0, k⊥,0,±kz,0), and (2k⊥,0, 0,±kz,0), where k⊥,0 =
2π/L⊥ and kz,0 = 2π/Lz. A different phase is used
for each mode. “Alfvén waves” are to be understood
here in the usual sense of MHD with corresponding per-
pendicular fluid velocity δu⊥ and magnetic field δB⊥

perturbations. Each pair of counterpropagating waves
has equal amplitudes, such that the mean cross-helicity
Hc = 〈δu · δB〉 is zero (results from a second simulation
with nonvanishing cross-helicity are included in Supple-
mental Material [75]). Ions and electrons have an ini-
tial Maxwellian velocity distribution with equal temper-
atures T0 and uniform densities n0, corresponding to a
thermal velocity vth,i =

√

2T0/mi = 0.031c for ions and

vth,e =
√

2T0/me = 0.25c for electrons [76], where c is
the light speed, mi is the ion mass, and me is the electron
mass. We also initialize a self-consistent electric current
according to J = c

4π∇ × δB⊥. A reduced ion-electron

mass ratio ofmi/me = 64 is used and the electron plasma
to cyclotron frequency ratio is ωpe/Ωce = 2.83. The
ion plasma beta is βi = 8πn0T0/B

2

0
= 0.5. The ini-

tial turbulence amplitude ǫ = δB/B0 = δu/vA, where
vA = B0/

√
4πn0mi is the Alfvén speed, δu is the root-

mean-square fluid velocity, and δB is the root-mean-
square fluctuating magnetic field, is chosen such as to
satisfy the critical balance condition (k⊥δB = k‖B0) at
the box scale: ǫ = L⊥/Lz = 0.4. The physical setup
resembles the plasma conditions inferred from solar wind
measurements [27, 38, 41, 42] in the following ways: i)
an anisotropy is imposed at the box scale (kz,0 < k⊥,0),
ii) the initial condition consists of counterpropagating,
oblique Alfvén waves, iii) the initial turbulence ampli-
tude is chosen such as to satisfy critical balance, and
iv) the plasma parameters are similar to those typically
found in the solar wind (plasma beta and ion-electron
temperature ratio both order unity).

We perform the simulation using the particle-in-
cell code OSIRIS [77, 78]. The spatial resolution is
(Nx, Ny, Nz) = (768, 768, 1536). We employ on average
64 particles per cell per species. The charge distribution
of each finite-size particle is represented by 3rd order cu-
bic splines [79], which improve energy conservation and
reduce the relative amount of particle noise compared to
lower order splines [80, 81]. At each step, we also apply a
2nd order compensated binomial filter [79] on the electric
current and on the electromagnetic fields felt by the parti-
cles. The total energy increase due to numerical heating
is kept below 0.033% during the entire simulation. To
reduce particle noise, the data used for the spectral and
scale-dependent anisotropy analysis is short-time aver-
aged over a time window of duration ∆t = 2.4Ω−1

ce , where
Ωce = e0B0/(mec) and e0 is the elementary charge.

Global evolution.—The global evolution during the tur-
bulent decay is illustrated in Fig. 1 by plotting the mean
fluctuating magnetic energy and the mean square elec-
tric current versus time. We take the box-scale Alfvén
transit time, tA = Lz/vA, as the basic time unit. The
markers in Fig. 1(b) are used to indicate the times at
which we analyse the turbulence spectral properties in
what follows. The magnetic energy decreases throughout
the simulation as a result of ion and electron heating. By
the end of the simulation, the species internal energy in-
creases by 17% for ions and by 15% for electrons (relative
to the value at t = 0), whereas the bulk fluid energy de-
creases by 76%. On the other hand, the electric current
undergoes an initial transient, during which it is rapidly
amplified, before it eventually starts to decrease. The
rapid current amplification can be attributed to current
sheet formation [13, 21]. Indeed, a visual inspection of
the 3D structure of the electric current (not shown here)
reveals that the turbulent structures are mainly sheet-
like (see Supplemental Material [75] for an animation,
showing how the current sheets form).

Turbulent spectra and spectral ratios.—We compute
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Figure 1. (Color online) Time evolution of the mean magnetic
energy (a) and of the mean square electric current (b). The
curves are normalized to the values at t = 0. The markers in
figure (b) denote the times at which we analyse the spectral
properties (t1/tA = 0.71, t2/tA = 0.88, t3/tA = 1.06).

the one-dimensional perpendicular wavenumber spectra
E(k⊥) by summing the squared amplitudes of Fourier
modes contained in a given perpendicular wavenumber
shell of width ∆k⊥ = 2π/L⊥, followed by an average
along the z direction. The shells are non-overlapping
and centered at integer values of ∆k⊥. We approximate
the perpendicular wavevectors as k⊥ ≈ (kx, ky). That
is, the perpendicular direction is defined with respect to
B0 [82]. In Figure 2 we show the spectra of the magnetic
(δB), perpendicular electric (E⊥), and electron density
fluctuations (δne) at time t1 = 0.71tA. Similar results
are obtained at later stages of the turbulent decay (not
shown here) at times t2 and t3 marked in Fig. 1. Dotted
vertical lines are used in Fig. 2 to indicate various ki-
netic scales: the species inertial length ds = c/ωps, where

ωps =
√

4πe2
0
n0/ms and s = i, e is the species index,

the species Larmor radius ρs = vth,s/Ωcs, where Ωcs =
e0B0/(msc), and the Debye scale λD = vth,e/(ωpe

√
2).

The sub-ion-scale spectra are in relatively good agree-
ment with a number of observational studies [20, 27–
29], albeit with some limitations due to the reduced ion-
electron mass ratio in our simulation. In particular, the
local slope of the magnetic energy spectrum is consistent
with the typical values of spectral exponents observed
in the solar wind [28, 29], even though a well-defined
sub-ion-scale power law cannot be established. The lack
of a well-defined power law, should one in fact exist, can
presumably be attributed to the proximity of electron ki-
netic scales, which may cause a steepening of the spectral
slope due to collisionless damping via the electron Lan-
dau resonance [10, 60, 64, 68, 70]. Indeed, solar wind ob-
servations [28] and gyrokinetic simulations [60, 64] with
realistic proton-electron mass ratios show a steepening
of the magnetic energy spectra as the wavenumber ap-
proaches the electron scales.

Looking at the results for δne and E⊥, we find that the
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Figure 2. (Color online) One-dimensional k⊥ spectra of mag-
netic, perpendicular electric, and density fluctuations at time
t1 = 0.71tA. The −2.8 slope is shown for reference. Gray
shading is used to indicate the range of scales dominated by
particle noise.

electric field spectrum flattens in the kinetic range and
separates from the magnetic energy, whereas the density
spectrum converges toward a near equipartition with the
magnetic spectrum in appropriately normalized units [20,
35]. Both of these features are in agreement with solar
wind observations [20, 27]. Most importantly, the near
equipartition among density and magnetic fluctuations in
the sub-ion range is a key property of KAWs, as opposed
to the weakly compressible ((|δne|/n0)

2 ≪ (|δB|/B0)
2)

whistler waves [20, 35, 54]. In the asymptotic limit

1/ρi ≪ k⊥ ≪ 1/ρe, k‖ ≪ k⊥, (1)

assuming singly-charged ions, and equal ion and elec-
tron temperatures, the analytical prediction for KAWs
reads [35]: (βi + 2β2

i )(|δne|/n0)
2 ∼ (|δB|/B0)

2. Thus,
for βi = 0.5 we have (|δne|/n0)

2 ∼ (|δB|/B0)
2, in agree-

ment with our results presented in Fig. 2. The difference
between the density and magnetic energy spectral slopes
seen in Fig. 2 is a trend not captured by the asymptotic
prediction. It is, however, fully consistent with results
from nonlinear gyrokinetic simulations [70].
To further demonstrate that the sub-ion-scale fluctu-

ations are consistent with theoretical expectations for
KAWs, we consider the following ratios of the one-
dimensional spectra [11, 35, 54, 70]:

(|E⊥|c/vA)2
|δB⊥|2

∼ (k⊥ρi)
2

4 + 4βi
,

(|δne|/n0)
2

(|δB‖|/B0)2
∼ 1

β2

i

,

|δB‖|2
|δB|2 ∼ βi

1 + 2βi
. (2)

The above expressions are obtained from linearized ki-
netic equations in the limit (1) for singly-charged ions,
and equal ion and electron temperatures. The turbu-
lence spectral ratios are compared against the analytical
predictions in Fig. 3 [83]. Good agreement between the
linear KAW theory and the simulation is found for all
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ratios. The results are also in good agreement with non-
linear gyrokinetic simulations [70]. Considering the fact
that the initial fluctuation amplitude in our simulation
is relatively large, our simulation box is only moderately
elongated along z, and the ion-electron mass ratio has
been reduced, the agreement with theoretical predictions
is quite remarkable and indicates a certain robustness of
the KAW cascade, beyond the limits of gyrokinetic the-
ory, in the context of which KAW turbulence has most
frequently been studied [14, 15, 60, 64].
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Figure 3. (Color online) Ratios of the k⊥ spectra obtained
from the simulation (solid lines; see text for further details).
Dashed lines show the analytical predictions for KAWs [11,
35].

Scale-dependent anisotropy.—Finally, we consider the
local scale-dependent anisotropy of the kinetic turbu-
lence. We employ the method introduced by Cho and
Lazarian [52, 56], which we summarize here briefly as
follows. At a given perpendicular wavenumber k⊥, we
define a local mean magnetic field B0,k⊥

and a local fluc-
tuating field δBk⊥

. The local mean field is obtained
by eliminating the Fourier modes with perpendicular
wavenumbers greater than k⊥/2 and the fluctuating field
is obtained by eliminating the modes with wavenumbers
less than k⊥/2 or greater than 2k⊥. The characteristic
local parallel wavenumber k‖ at scale l⊥ ∼ 1/k⊥ is then
approximated as [56]

k‖ ≈
(

〈

|B0,k⊥
· ∇δBk⊥

|2
〉

〈B2

0,k⊥
〉〈δB2

k⊥
〉

)1/2

, (3)

where 〈. . . 〉 represents a space average. In addi-
tion, we estimate the nonlinearity parameter χ ≈
k⊥〈δB2

⊥,k⊥
〉1/2/

(

k‖B0

)

[10, 11, 52], which can be re-
garded as an approximation for the ratio of linear (KAW)

and nonlinear time scales. For a critically balanced cas-
cade, it is expected by definition that χ ∼ 1. The results
are shown in Fig. 4. Over a limited sub-ion range, the
anisotropy scaling is broadly consistent with the standard

critical balance prediction, k‖ ∝ k
1/3
⊥ [10, 11], although

the scale separation in the simulation is to small to de-
termine the scaling precisely. The estimated nonlinearity
parameter is order unity at sub-ion scales and exhibits a
weak dependence on k⊥. The scale dependence of χ could
be possibly attributed to dissipative effects and/or inter-
mittency [57]. Moreover, supposing linear modes other
than KAWs are energetically significant, they could bias
the anisotropy estimation of the KAW portion of the cas-
cade. Within the limits of the spectral ratios analysis,
we do not find evidence for the latter possibility. We also
confirmed that the anisotropy does not change signifi-
cantly upon inclusion of a moderate mean cross-helicity
(see Supplemental Material [75]). The question whether
or not our conclusions are influenced by the reduced ion-
electron mass ratio of 64 or by the lack of an external tur-
bulence forcing is left for future studies. Nonetheless, the
local scale-dependent anisotropy calculation performed
in this work provides the first reference values obtained
from a 3D kinetic simulation.
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Figure 4. (Color online) Scale-dependent anisotropy with re-
spect to the direction of the local mean magnetic field (a)
and the scale-dependent ratio of the linear (KAW) and non-
linear time scales (b). The 1/3 slope in figure (a) is shown for
reference.

Discussion and conclusions.—This Letter presents a
3D fully kinetic simulation of plasma turbulence under
conditions relevant to the solar. We show that the spec-
tral properties in the sub-ion range are consistent with
theoretical expectations for KAWs. The initial pertur-
bations at the start of the simulation are restricted to
scales above the ion inertial length. Furthermore, the ini-
tially excited Alfvén waves are only moderately oblique.
Therefore, it is not obvious from a theoretical perspec-
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tive that kinetic Alfvén fluctuations should dominate at
sub-ion scales. Other possibilities, such as whistler wave
turbulence, cannot be ruled out. However, that is not
what we observe. A direct calculation of the local scale-
dependent anisotropy is also performed. This allows for
an estimate of the nonlinearity parameter χ, which is in
broad agreement with critical balance (χ ∼ 1) at sub-ion
scales [10, 11].
Our work has important implications for the funda-

mental understanding of kinetic turbulence in weakly col-
lisional plasmas, such as the solar wind, where a number
of experimental studies already support the KAW tur-
bulence scenario [20, 27, 29, 31]. Several alternatives or
extensions of the KAW turbulence theory have been con-
sidered, such as a transition to whistler turbulence deep
in the sub-ion range [17, 18], or reconnection-mediated
kinetic turbulence [84–87]. Given that our simulation
covers only a moderate range of scales, it is presently dif-
ficult to assess the hypothetical role of these features and
a definitive answer is left for future works. In this work
we demonstrated that, even when the full range of 3D
kinetic physics is retained, the phenomenology of criti-
cally balanced KAW turbulence remains highly relevant.
Thus, the KAW turbulence theory seems to provide at
least a reasonable starting point, upon which more re-
fined models could be built.
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investigator J. Büchner for providing access to the re-
source. N.F.L. was supported by the NSF CAREER
award No. 1654168. The authors would like to acknowl-
edge the OSIRIS Consortium, consisting of UCLA and
IST (Lisbon, Portugal) for the use of OSIRIS and for
providing access to the OSIRIS framework. D.G. thanks
F. Tsung, V. Decyk, and W. Mori for helpful discussions
about the particle-in-cell method and simulations with
the OSIRIS code.

[1] R. Bruno and V. Carbone, Living Rev. Solar Phys. 10,
2 (2013).

[2] E. Quataert and A. Gruzinov, Astrophys. J. 520, 248
(1999).

[3] P. Sharma, E. Quataert, G. W. Hammett, and J. M.
Stone, Astrophys. J. 667, 714 (2007).

[4] M. W. Kunz, J. M. Stone, and E. Quataert, Phys. Rev.
Lett. 117, 235101 (2016).

[5] T. J. Dennis and B. D. G. Chandran, Astrophys. J. 622,
205 (2005).

[6] I. Zhuravleva, E. Churazov, A. A. Schekochihin, S. W.
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