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We describe a broadly applicable experimental proposal to search for the violation of local Lorentz
invariance (LLI) with atomic systems. The new scheme uses dynamic decoupling (DD) and can be
implemented in current atomic clocks experiments, both with single ions and arrays of neutral atoms.
Moreover, the scheme can be performed on systems with no optical transitions, and therefore it is also
applicable to highly charged ions which exhibit particularly high sensitivity to Lorentz invariance
violation. We show the results of an experiment measuring the expected signal of this proposal
using a two-ion crystal of 88Sr+ ions. We also carry out a systematic study of the sensitivity of
highly charged ions to LLI to identify the best candidates for the LLI tests.

Local Lorentz invariance (LLI) is a cornerstone of
modern physics: the outcome of any local experi-
ment is independent of the velocity and the orien-
tation of the (freely-falling) apparatus. The field of
Lorentz symmetry tests encompasses almost all fields
of physics [1–3] and includes searches for Lorentz vi-
olation (LV) in the matter, photon, neutrino, and
gravity sectors. While the natural energy scale for
strong LV induced by quantum gravity is the Planck
scale (MPl ∼ 1019 GeV/c2), the consequences of
the Lorentz-violating physics may also lead to very
small but potentially observable low-energy LV[4, 5].
Atomic physics LLI tests were reviewed in [6]. In
this work, we develop new schemes and propose
new systems for the LLI tests in the electron-photon
sector, performed with either trapped ions or neu-
tral atoms using quantum-information enabled tech-
nologies, and provide proof-of-principle experimental
demonstration.

LLI-violating effects are classified in the framework
of the standard model extension (SME) [3, 7]. Viola-
tions of Lorentz invariance in bound electronic states
result in a small shift of the energy levels described by
a Hamiltonian [8]
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where p is the momentum of a bound electron, c is the
speed of light, and U is the Newtonian gravitational

potential. The parameters C
(0)
0 , c00, and C

(2)
0 contain

elements of the cµν tensor quantifying the LLI viola-

tion [8, 9]. The relativistic form of the T
(2)
0 operator is

T
(2)
0 = cγ0(γp−3γzpz), where γ0 and γ are the Dirac

matrices. The cµν tensor has nine components. The
cTJ and cTT terms describe the dependence of the
kinetic energy on the boost of the laboratory frame
and have a leading order time-modulation period re-
lated to the sidereal year. The elements cJK , where
J,K = X,Y, Z, describe the dependence of the kinetic
energy on the direction of the momentum and have a
leading order time-modulation period related to the
sidereal day (12 h and 24 h modulation).

The most sensitive LLI tests for electrons have been
conducted with neutral Dy atoms [8] and Ca+ ions [9].
Recently, it was proposed to test LLI using a pair of
two entangled trapped Yb+ ions in the 4f136s2 2F7/2

state of Yb+ with the prospect to improve the cur-
rent most stringent bounds by 105 [10]. However, the
proposal of [10] requires using a decoherence-free sub-
space to cancel out magnetic field fluctuations. The
need to prepare an entangled superposition of two
ions, leads to three major difficulties: (1) applying
it to the single trapped-ion clock experiments leads
to a significant loss of sensitivity, (2) scaling it to a
larger number of ions requires creating a large num-
ber of entangled pairs, and (3) the scheme cannot be
readily applied to highly charged ions which often lack
strong optical transitions. The scheme proposed here
mitigates all these problems without significant loss of
sensitivity and provides a pathway to significantly ex-
tend the ultimate accuracy of LLI tests in the electron-
photon sector. We also explore a possibility to use
highly charged ions or optical-lattice clocks to test the
local Lorentz invariance violation and demonstrate en-
hancements of the LLI violating effects in comparison
with Yb+.

Experimental proposal. We describe the proposed
experimental scheme for the general case and use the
example of Yb+ 2F7/2 state for modeling. The matrix

element of the T
(2)
0 operator in Eq. (1) is

〈J,m|T (2)
0 |J,m〉 =

−J (J + 1) + 3m2√
(2J + 3) (J + 1) (2J + 1) J (2J − 1)

× 〈J ||T (2)||J〉, (2)

where J and m denote the quantum numbers of the
total electronic angular momentum and its projection
on the quantization axis. Therefore, the tensor LLI-
violating signal contains a term proportional to m2.
Thus, the experimental goal is to monitor the split-
ting between different m levels as the Earth rotates
around its axis and around the Sun, and thus place

a bound on C
(2)
0 . Typically, the main source of de-

coherence in this type of experiments is the magnetic
field noise leading to uncontrolled Zeeman shifts. In
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order to reduce the effect of magnetic field noise while
maintaining the m2 dependent effects, we propose a
dynamical decoupling (DD) [11] technique that is ap-
plicable to spins of arbitrary size.

General physical system description. We consider
a spin J system whose associated magnetic moment
µz interacts with a magnetic field , B = Bz ẑ. The
Hamiltonian Hlin = µzBzJz has equidistant energy
eigenstates |J,m〉. In addition to this linear Zeeman
effect, we assume a small energy shift proportional
to m2, which can result from possible Lorentz violat-
ing terms but also from second order Zeeman shift or
the electric quadrupole shift originating in ion traps
from their inherent electric field gradient. This shift
enters the Hamiltonian as Hquad = κJ2

z . The to-
tal free evolution Hamiltonian is the sum of linear
and the quadratic terms Hfree = Hquad + Hlin =
κJ2

z + µzBzJz. We assume that we can drive our
system with a radio-frequency (RF) oscillating mag-
netic field tuned close to the resonance transition fre-
quency ωRF = µzBz

~ + δ (t), where δ (t) accounts for
drifts in the ambient magnetic field at the spin’s posi-
tion. This drive translates to adding the time depen-
dent coupling term Hcoup = Ω (t) cos (ωRF t+ φ) Jx
to the Hamiltonian, where Ω is the multi-level Rabi
frequency and φ is the RF phase. Moving to the inter-
action picture with respect to the oscillating magnetic
field and applying the rotating wave approximation,
we obtain the evolution Hamiltonian:

H = δ (t) Jz+κJ2
z+Ω (t) [Jx cos (φ)− Jy sin (φ)] . (3)

In what follows, we assume that Ω (t) can take val-
ues of Ω0 � κ, δ (t) and 0. According to Eq. (3)
that means that while applying a RF drive with dura-
tion ∼ π

Ω0
the evolution due to Hfree can be neglected

while the evolution due to Ω0 [Jx cos (φ)− Jy sin (φ)]
is significant.

Experimental scheme. In the following, we de-
scribe the DD method aimed at measuring κ while
mitigating the unwanted magnetic field noise δ (t) by
a periodic modulation of Ω and φ. This method is
premised on a scheme published in Ref [12] where
it was used to measure the electric quadrupole shift,
and is in a sense a generalization of the ubiquitous
spin-echoed Ramsey sequence for a large spin J . For
clarity, we describe a specific DD sequence although
other types of DD sequences may be applied as well.
The sequence begins with initializing our spin state in
a specific Jz eigenstate |J,m = m′〉. A resonant RF
pulse is then applied for a duration of τ = π

2Ω0
(π2

pulse). We define the phase of this pulse to be φ = 0,
and therefore the corresponding evolution operator is
exp

(
iπ2 Jx

)
. This pulse maps the spin state to the cor-

responding Jy eigenstate, and thus acts as the first π
2

pulse of a Ramsey sequence. Next, a modulation se-
quence is applied, in the form of

[tw]–[π+y]–[2tw]–[π−y]–[tw]
where π±y are RF pulses with duration π

Ω0
(π pulses)

with φ = ±π2 and 2tw is the wait time between pulses,
where the spin evolves freely. We choose the time tw
such that over 4tw time δ (t) changes slowly, and is
effectively constant. Therefore, we can write the evo-

lution of the spin system as,
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As a result of the commutation relation[
J2
z , exp (±iπJy)

]
= 0, the signal term, κJ2

z , gener-
ates a phase shift which is coherently accumulated
during the sequence. However, [Jz, exp (±iπJy)] 6= 0,
and thus the phase due to the magnetic noise term
δ (t) Jz is largely reduced by averaging. The evolution
operator then reads U = exp

(
i4κtwJ

2
z

)
.

Following n repetitions of U , a second π
2 pulse is

applied, with an RF phase φ with respect to the first
π
2 pulse. The evolution of the entire sequence, after a
total time of T = 4ntw, can be written as,

Utotal = exp
(π

2
[Jx cos (φ)− Jy sin (φ)]

)
exp

(
iκTJ2

z

)
exp

(π
2
Jx

)
. (5)
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FIG. 1. Theoretical calculation of P 7
2
,m (κT, φ) for differ-

ent m values. P 7
2
,m is periodic in κT with period of π and

it is symmetric with respect to ±m. Therefore we only
plot negative m values and κT ∈ [0, π]. (a,b) theoretical
calculation of P 7

2
,- 7

2
(κT, φ) , P 7

2
,- 1

2
(κT, φ) as a function of

φ and κT respectively. Solid red line marks the φ = π line
where the Ramsey fringe should be measured for maximal
sensitivity. (c,d) Ramsey fringe in the m = - 7

2
, - 1

2
respec-

tively, as a function of κT . The curves correspond to the
populations along the red solid lines in the top left and
top right plots respectively. Red dashed line marks the
highest sensitivity κT , and the red full circle marks the
corresponding value of PJ,m (κT, φ).

Finally, the population in the initial state

|J,m = m′〉, PJ,m′ (κT, φ) = |〈J,m′| Utotal |J,m′〉|2, is
measured. Since T , the total experiment time, is
known and φ can be calibrated, PJ,m′ (κT, φ) can be
directly used to estimate κ. PJ,m (κT, φ) is therefore
an equivalent of the Ramsey fringe in this large-J
Ramsey-sequence generalization. The theoretical cal-
culation of PJ,m (κT, φ) for J = 7

2 and m = - 7
2 , -

1
2 are

shown in Fig. 1. By repeating this measurement se-
quentially in time and recording PJ,m (κT, φ), κ can
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be extracted. Fig. 1c,d show the expected signal as a
function of κT for φ = 0. The proposed experiment
consists of monitoring the results of sequential mea-
surements in time of PJ,m (κT, φ), and look for time-
dependent variation at the theoretical sidereal day and
sidereal year periods. An optimal point to search for
variations in κ would be around the point at which
PJ,m (κT, φ = 0) has the steepest slope with respect to
κT , indicated by the red dashed lines in Fig 1a,b. See
supplementary material for further discussion. Exper-
imentally it will be likely easiest to choose the total
Ramsey time T to maximize the slope, but also the
trap frequency and magnetic field can be used to tune
κ via the electric quadrupole or second-order Zeeman
shifts.

Notice that this method contains only local spin
operations. It is therefore straightforward to gener-
alize this method for an ensemble of N spins, e.g. a
large ion chain or neutral atoms in an optical lattice.
The uncertainty in evaluating κ thus reduces by a
factor of

√
N .

In addition, our procedure requires only initializing
and detecting one specific state; |J,m〉. This is useful
in systems where logic spectroscopy [13] must be used,
e.g. for highly charged trapped ions. Moreover, even
if weak optical transitions are required to initialize
and read-out the final state, the coherent operations
are carried out with RF only, thus avoiding effects
from systematic AC-Stark shifts.

Another advantage of the RF-manipulation scheme
is that the wavelength of the RF-radiation is much
longer than the motional amplitudes of the ions al-
lowing for high-fidelity coherent manipulation even at
high temperatures. While one may still require optical
fields to initialize and read out the states STIRAP or
sequentially repeated pulses can be used yielding high
state transfer fidelities even if the quality of a π-pulse
would be low [14]. Finally, we note that one can also
use strong RF field gradients to drive sideband transi-
tions. As a consequence, one can apply quantum logic
spectroscopy and detect the state of probe ions even
if there are no optical transitions available opening up
the possibility to use any HCI whose ground state has
an angular moment of larger than 2~.
Measurement sensitivity. One important aspect is

how sensitive the presented method is as compared to
the method presented in Ref. [10]. The contribution
of Lorenz violation effects to κ is given by Eq. 2

κLLI/2π = 5.1× 1015Hz · C(2)
0 . (6)

In the supplement, we evaluate the measurement pre-
cision ∆κ with which κ can be measured for J = 7

2 .

We find that it is optimal to use m = 1
2 as an ini-

tial state and estimate for this case ∆κ = 0.1 rad√
NτT

where T, τ and N are the interrogation time, total in-
tegration time and the number of spin probes, respec-
tively. For comparison, ∆κ calculated for the method
presented in Ref. [10] is ∆κ = 0.083 rad

N
√
τT

. While

for small ion or atom numbers N both methods yield
similar precisions, the method presented here can be
readily extended to larger N , while the method in

Ref. [10] is more difficult to scale due to the complex-
ity in exploiting quantum correlations.

a b

c

FIG. 2. Experimental verification of the DD method on
the 4D 5

2
level of two trapped 88Sr+ ions. (a,b) Measure-

ment of P 5
2
,− 3

2
(κT, φ) in percent after the above DD se-

quence for different T and φ, for ion 1 and ion 2 respec-
tively. In the experiment tw = 150 µsec and the DD pulse
number goes from 2 to 110 (see supplemental material).
(c) Theoretical calculation of P 5

2
,− 3

2
(κT, φ).

Proof-of-principle experimental demonstration. In
order to verify the scheme, we measured κ for the 4D 5

2

level in two 88Sr+ ion chain trapped in a linear Paul
trap [15]. The dominant contribution to κ comes from
the quadrupole shift, which can be used as a resource
to tune our system to the most sensitive measurement
point. We initialized our ions in the m = − 3

2 , and im-
plemented the above DD sequence for times between
600 µsec and 33 msec, with up to 110 pulses using
tw = 150 µsec. The results along with the correspond-
ing theoretical expectations are presented in Fig. 2.

a. Neutral atoms in optical lattices. Our DD
scheme can also be applied to neutral atoms which al-
low for a large number N of probes and have already
been successfully employed for LLI tests in electro-
magnetic sector [8]. To overcome systematic effects it
may be advantageous to trap them in optical lattices
where potentially 105 or more atoms may be held in
the future [16]. In the current lattice clocks, such as
Sr, Yb, or Mg, J = 0 states are used exhibiting no
sensitivity to tensor LLI in the electromagnetic sec-
tor.Nevertheless, other precision LLI tests could be
possible with neutral atom clocks, such as for example
measuring LLI effects due to the first term in Eq. (1)
and measuring cµν in the nucleon sector using isotopes
with nuclear spin I > 1/2 see [17–20]. For the LLI
tests in the electron sector with neutral atoms, the
ground state of Tm, having the the same electronic
4f136s2 2F7/2 configuration as Yb+, appears to be
rather well suited as it has the same high sensitivity
as Yb+. Moreover, Tm is already being pursued for
the lattice clock development, and trapping of the en-
semble of Tm atoms in a 1D optical lattice has been
demonstrated [21]. We note that a Tm clock is not
needed for an LLI test, just the ability to perform the
scheme described here for the Tm ground state. Us-
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TABLE I. The reduced matrix elements |〈J ||T (2)||J〉| (in
a.u.) and LLI-induced energy shift (in Hz) between the
highest and lowest values of |m|. The Ca+, Yb+, and Yb
values are for the excited states, all other values are for
the ground states. N is the number of the electrons in an
ion.

Ion N Level J |〈J ||T (2)||J〉| |∆E/(hC(2)
0 )|

Ca+ 19 3d 5/2 9.3 4.5× 1015 [9]
Yb+ 69 4f136s2 7/2 135 6.1× 1016 [10]

Tm 69 4f136s2 7/2 141 6.4× 1016

Yb 70 4f135d6s2 2 74 3.9× 1016

Th3+ 87 5f 5/2 47 2.2× 1016

Sm15+ 47 4f 5/2 128 5.7× 1016

Sm14+ 48 4f2 4 124 5.5× 1016

Sm13+ 49 5s24f 5/2 120 5.8× 1016

Eu14+ 49 4f25s 7/2 120 5.4× 1016

Nd10+ 50 4f2 4 96 4.3× 1016

Cf15+ 83 5f6p2 5/2 112 5.4× 1016

Cf17+ 81 5f 5/2 144 6.9× 1016

Os18+ 58 4f12 6 367 1.4× 1017

Pt20+ 58 4f12 6 412 1.6× 1017

Hg22+ 58 4f12 6 459 1.8× 1017

Pb24+ 58 4f12 6 507 2.0× 1017

Bi25+ 58 4f12 6 532 2.1× 1017

U34+ 58 4f12 6 769 3.0× 1017

ing Yb, the metastable 4f135d6s2 J = 2-state could
be used, too. For neutral atoms held in optical lat-
tices, an additional systematic effect may arise from
the trapping beams due to ac Stark shifts of the Zee-
man components.
Highly charged ions. A number of highly charged

ions (HCI) were recently shown to be candidates for
the development of atomic clocks and the search for
variation of the fine-structure constant α [22, 23]. Ex-
perimentally, sympathetic cooling of HCI was demon-
strated in [24] for Ar13+ and the spectra of Ir17+ ion,
suitable for the above applications, were explored in
Ref. [25]. We have carried out the calculation of the

matrix elements of the T
(2)
0 operator in the wide range

of HCIs and find enhancement in the LLI effects for
the states containing 1-2 valence electrons or holes in
the nf shell. HCIs have a number of important ad-
vantages: (i) the LLI probe state is a ground state in
many ions allowing for straightforward application of
the scheme, (ii) there is a wide variety of the ions to
choose from, (iii) there is an extra enhancement factor
with the degree of ionization.

The calculations for the monovalent ions are car-
ried out using the linearized coupled-cluster single-
double method (see [26] for a review). The cal-
culation for the other ions are carried out using a
method combining configuration interaction (CI) with
a modified linearized single-double coupled-cluster ap-
proach [27, 28]. The details of the calculations are de-
scribed in the supplemental material [29]. The results

for selected HCIs are summarized in Table I. We only
list the HCIs where LLI can be tested in the ground
state since it simplifies the implementation scheme as
it only requires a logic ion and RF pulses. The calcu-
lations are carried out for the ions already suggested
for design of the atomic clocks and tests of α variation
[23, 30–33]. The table lists the reduced matrix ele-
ments |〈J ||T (2)||J〉| (in a.u.) and LLI-induced energy
shift (in Hz) between the highest and lowest values
of the magnetic quantum numbers |mJ |, for example
mJ = 7/2 and mJ = 1/2 for J = 7/2. The Ca+

and Yb+ values are listed for reference. We list the
number of the electrons N for convenience. With the
exception of the case with N = 58, we only list the
ions of the isoelectronic sequence with the lowest ion-
ization charges which have at least one nf electron in
the ground state. More highly charged ions from the
same isoelectronic sequence can be used as well and
are expected to have even larger sensitivities to LLI.
We demonstrate this point in the lower part of the ta-
ble, where we list a number of ions with 58 electrons
and the same 4f12 ground state configurations but
with increasing ionization charge. Bi25+, which can
be produced with a small table-top electron-beam ion
traps already has factor of 4 larger matrix element
in comparison with Yb+. The enhancement with the
ionization charge occurs for all other isoelectronic se-
quences as well, so a very large number of HCIs is suit-
able for the LLI tests using the experimental scheme
describe above. We also list Th3+ since it can be di-
rectly laser cooled [34] and has 5f5/2 ground state. It
can serve as excellent experiment test bed for later
experiments with HCI.

In summary, we proposed an experimental scheme
for drastic improvement of the LLI tests in the elec-
tron sector. The scheme is applicable to any atomic
spin system, including single and highly charged
trapped ions and neutral atomic lattice clocks. It
does not involve correlating operations between dif-
ferent spin probes, which simplify the experimental
procedure to large extent.
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