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Abstract

Near the horizon, the obvious symmetries of a black hole spacetime—the

horizon-preserving diffeomorphisms—are enhanced to a larger symmetry

group with a BMS3 algebra. Using dimensional reduction and covariant

phase space techniques, I investigate this augmented symmetry, and show

that it is strong enough to determine the black hole entropy.
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1 Introduction

One of the most striking features of black hole thermodynamics is the universality of the
Bekenstein-Hawking entropy. Black holes, black strings, black rings, black branes, black Saturns,
in any dimension, with any charges and spins, with horizons arbitrary distorted by external fields,
all have entropies

SBH =
Ahor

4G~
(1.1)

where Ahor is the horizon area. Changing the action can change this formula, but only by another
universal term. To deepen the mystery, many different models of the quantum black hole, from
string theory to loop quantum gravity to induced gravity, all yield the same entropy, even though
they seem to count very different microstates [1]. Even in the elegant analysis of BPS black holes
in string theory [2], the entropy and the area are determined separately in terms of a set of charges,
and the relation (1.1) requires a new computation for each choice of charges. It seems clear that
some underlying structure is missing.

A first guess for this deeper structure is that the relevant degrees of freedom live on the
horizon [3]. But this is not enough: while it may explain the proportionality of entropy to area,
there is no obvious reason for the coefficient of 1/4 to be universal. A more elaborate idea, first
suggested (I believe) in [4], is that the entropy is governed by a horizon symmetry. Two-dimensional
conformal symmetry, in particular, has similar universal properties—the Cardy formula fixes the
asymptotic behavior of the density of states in terms of a few parameters, independent of the
details of the theory [5]—and the possibility of a connection is appealing.

This possibility was first confirmed for the (2+1)-dimensional BTZ black hole in 1998 [6,7], and
attempts to extend it to higher dimensions soon followed [8, 9]. These efforts have had significant
success; see [10] for a review. But they are plagued by serious limitations:

• The symmetries are normally imposed either at infinity or at a timelike “stretched horizon”
(although with rare exceptions [11]). Physics at infinity is very powerful, especially for
asymptotically anti-de Sitter spaces, but the symmetries by themselves cannot distinguish
a black hole from, for instance, a star. The stretched horizon more directly captures the
properties of the black hole, but while the entropy has a well-defined limit at the horizon,
other parameters typically blow up [12, 13] (again with occasional exceptions [14]), and
different definitions of the stretched horizon can lead to different entropies [15,16].

• The approach fails in what should be the simplest case, two-dimensional dilaton gravity.
There are ad hoc fixes—lifting the theory to three dimensions [17] or artificially introducing
an integral over time [18]—but none is convincing.

• In higher dimensions, the relevant symmetries are those of the “r–t plane” picked out by the
horizon. But to obtain a well-behaved symmetry algebra, one must introduce extra ad hoc
angular dependence of the parameters that has no clear physical justification.

Here∗ I show how to fix these problems. The basic mistake, I argue, has been to try to force
the horizon symmetry into the form of a two-dimensional conformal symmetry. This was an
understandable choice: until recently, such a symmetry was the only one known to be powerful

∗An expanded version of this work will appear in [23].
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enough to control the density of states. But it has now been shown that a BMS3 symmetry has
similar universal properties, including a generalized Cardy formula for the entropy [19].

Using covariant phase space methods [20, 21], I show that the symmetry generators can be
expressed as integrals along the horizon [22], with no “stretching.” I then demonstrate that a
BMS3 symmetry appears in a natural way on the horizon, circumventing the problems of previous
efforts, and that it gives the correct counting of states.

2 Quantum states from classical symmetries

Before proceeding, it is worth understanding how a classical symmetry can control the number
of quantum states. The basis assumption is that the symmetry, perhaps deformed, is realized in
the quantum theory. As we shall see below, the classical symmetry of the horizon of a dilaton
black hole is a BMS3 symmetry, with generators Ln and Mn satisfying a Poisson algebra

i {Lm, Ln} = (m− n)Lm+n, i {Mm,Mn} = 0,

i {Lm,Mn} = (m− n)Mm+n + cLMm(m2 − 1)δm+n,0 (2.1)

where cLM is a classical central charge. With the usual substitutions {•, •} → 1
i~
[•, •], 1

~
L → L̂,

1
~
M → M̂ , 1

~
c→ ĉ, we obtain a quantum operator algebra

[L̂m, L̂n] = (m− n)L̂m+n, [M̂m, M̂n] = 0,

[L̂m, M̂n] = (m− n)M̂m+n + ĉLMm(m2 − 1)δm+n,0 (2.2)

The factors of ~ in L̂ and M̂ ensure that the operators are dimensionless symmetry generators.
Classical values of the zero modes L0 and M0 now become eigenvalues hL = L0/~, hM =M0/~ of
the corresponding operators. The true quantum symmetry may be a deformation of (2.2)—other
central terms may appear, for example—but any differences will be suppressed by factors of ~.

Now, it has been known since 1986 that a two-dimensional conformal symmetry determines the
asymptotic density of states [5].† For the simplest case of free bosons and fermions, the result is
just the Hardy-Ramanujan formula from number theory for partitions of an integer [25]. I know of
no elementary explanation for the general case, but, roughly, the exact symmetry is strong enough
to prevent any exponential growth of states at all; growth occurs only because of the anomalous
symmetry-breaking characterized by the central charge c.

The symmetry (2.2) is not quite a conformal symmetry, but it is a group contraction, and as
Bagchi et al. have shown [19], it has a version of the Cardy formula for the density of states,

S ∼ 2πhL

√

ĉLM

2hM

=
2π

~
L0

√

cLM

2M0
(2.3)

where L0, M0, and cLM in the last equality are the classical values. As might have been expected,
the entropy is a classical “phase space volume” divided by ~.

3 Dilaton gravity with null dyads

We now apply this argument to the black hole. The horizon ∆ of a stationary black hole in any
dimension has a preferred null direction, determined by the geodesics that generate the horizon.

†For a careful derivation, see [24].
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A neighborhood of the horizon also has a preferred spatial coordinate, the proper distance from
∆. Together, these define a two-dimensional r–t plane, in which most of the interesting physics is
expected to take place, since transverse derivatives are red-shifted away near the horizon. Hawking
radiation, for instance, can be obtained by dimensional reduction to this plane [26].

Upon dimensional reduction and a field redefinition, the Einstein-Hilbert action becomes [27]

I =
1

16πG

∫

M

(ϕR + V [ϕ]) ǫ (3.1)

where ǫ is the volume two-form. The scalar field ϕ, the dilaton, is the remnant of the transverse
geometry, essentially the transverse area. The resulting equations of motion are

Eab = ∇a∇bϕ− gab�ϕ+
1

2
gabV = 0 (3.2a)

R+
dV

dϕ
= 0 (3.2b)

where the second equation is not independent, but follows from the divergence of the first.
Let us choose a null dyad (ℓa, na), with ℓ

2 = n2 = 0 and ℓ ·n = −1. For notational convenience,
define D = ℓa∇a, D̄ = na∇a. The metric and Levi-Civita tensor are then

gab = − (ℓanb + naℓb) ǫab = (ℓanb − naℓb) (3.3)

The dyad is determined only up to a local Lorentz transformation, ℓa → eλℓa, na → e−λna. We
can partially fix this freedom by choosing na to have vanishing acceleration, nb∇bn

a = 0; the
remaining transformations are those for which na∇aλ = 0. With this choice,

∇aℓb = −κnaℓb ∇anb = κnanb (3.4)

where κ will be the surface gravity at a horizon. Under variation of the dyad, (3.4) is preserved if

D̄(ℓcδnc) = (D + κ)(ncδnc)

δκ = −D(ncδℓc) + κℓcδnc + D̄(ℓcδℓc) (3.5)

By considering the commutator [∇a,∇b]ℓ
b, one may easily show that

R = 2D̄κ (3.6)

To integrate by parts along the horizon, I will also frequently use the identity

df = −Df na − D̄f ℓa for any function f (3.7)

where I am treating na and ℓa as one-forms.

4 The covariant canonical formalism and symplectic structure

The idea underlying the covariant canonical formalism is that for a theory with a unique time
evolution, the phase space, viewed as the space of initial data, can be identified with the space
of classical solutions [28, 29]. This observation, which can be traced back to Lagrange (see [28]),
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means that we can formulate all the usual ingredients of a Hamiltonian approach without ever
having to break general covariance by choosing a time slicing.

Consider a theory in an n-dimensional spacetime with fields ΦA (for us, ϕ and g) and a
Lagrangian density L[Φ], which we view as an n-form. Under a general variation of the fields,

δL = EAδΦ
A + dΘ[Φ, δΦ] (4.1)

where the equations of motion are EA = 0 and the last “boundary” term comes from integration
by parts. We normally ignore the boundary term, but in the covariant canonical formalism it plays
an essential role. The symplectic current ω is defined by a second variation,

ω[Φ; δ1Φ, δ2Φ] = δ1Θ[Φ, δ2Φ]− δ2Θ[Φ, δ1Φ] (4.2)

and the symplectic form is

Ω[Φ; δ1Φ, δ2Φ] =

∫

Σ
ω[Φ; δ1Φ, δ2Φ] =

∫

Σ
ωABδ1Φ

A ∧ δ2Φ
B (4.3)

where Σ is a Cauchy surface.
In keeping with the covariant phase space philosophy, Ω[Φ; δ1Φ, δ2Φ] depends on a classical

solution Φ, which fixes a point in phase space, and is a two-form on the phase space. The variations
δΦ are thus tangent vectors to the space of classical solutions, that is, solutions of the linearized
equations of motion. For a field theory in flat spacetime, it is easy to check that when Σ is a
surface of constant time, (4.3) is the ordinary symplectic form. The integral (4.3) may depend on
the choice of Cauchy surface, but only weakly: the symplectic current is a closed form, so integrals
over two Cauchy surfaces Σ1 and Σ2 differ only by boundary terms that may arise if ∂Σ1 6= ∂Σ2.

As in ordinary mechanics, the symplectic form determines Poisson brackets and Hamiltonians.
In particular, given a family of transformations δτΦ

A labeled by a parameter τ , the Hamiltonian
H[τ ] is determined by the condition

δH[τ ] = Ω[δΦ, δτΦ] (4.4)

for an arbitrary variation δΦ. This is just a disguised form of Hamilton’s equations of motion,

δτΦ
A = (ω−1)AB

δH[τ ]

δΦB
(4.5)

The Poisson bracket of two Hamiltonians is then

{H[τ1],H[τ2]} = δτ1H[τ2] = Ω[δτ1Φ, δτ2Φ] (4.6)

Specializing to dilaton gravity and using (3.6), it is straightforward to show that

Ω[(ϕ, g); δ1(ϕ, g), δ2(ϕ, g)] =
1

8πG

∫

Σ

[

δ1ϕδ2(κna) + δ1(D̄ϕ)δ2ℓa
]

− (1 ↔ 2) (4.7)

again treating ℓa and na as one-forms on the (one-dimensional) Cauchy surface Σ.
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Figure 1: Penrose diagram for the exterior of a black hole

5 Horizons and boundary conditions

For dilaton models obtained by dimensional reduction, ϕ is essentially the transverse area,
and the natural definition of a local “nonexpanding horizon” ∆—a null surface with vanishing
expansion [30]—is that Dϕ = 0 on ∆. This correctly determines the horizon from the purely two-
dimensional viewpoint as well: on shell, ∆ is a Killing horizon [27] and the boundary of a trapped
region [31]. Exact black hole solutions in two dimensions have such horizons, with essentially the
same Penrose diagrams as those in higher dimensions [32].

To study horizon symmetries in the covariant phase space formalism, we incorporate ∆ as part
of our Cauchy surface. Focus on the exterior region of an asymptotically flat black hole, with a
Penrose diagram of figure 1, and take Σ to be the union of the future horizon ∆ and future null
infinity I +, with ends at the bifurcation point B and spacelike infinity. The details of I + are
unimportant; the analysis will still hold for asymptotically de Sitter or anti-de Sitter space.

Let us define , to mean “equal on ∆,” where the horizon ∆ is now defined by the requirement
that Dϕ , 0. We shall impose three “boundary conditions” at this horizon:

1. DR , 0. This is a requirement of stationary geometry on ∆. In higher dimensions, this
condition follows automatically from the Raychaudhuri equation; here it must be imposed
by hand, although it holds identically on shell.

2. The conformal class of the metric is fixed on the horizon—that is, only variations of the form
δgab , δω gab are allowed—in keeping with the physical picture that conformal fluctuations
are the relevant degrees of freedom. This implies that ℓaδℓa , 0 and naδna , 0.

3. The integration measure na is fixed on ∆. In view of condition 2, the additional requirement
is that ℓaδna , 0. This is really a gauge-fixing condition, which can always be achieved by
a suitable local Lorentz transformation. I believe conditions 2 and 3 can be relaxed, at the
cost of some complication [23].

These conditions simplify the symplectic form (4.7) considerably. For the portion lying on the
horizon,

Ω∆[(ϕ, g); δ1(ϕ, g), δ2(ϕ, g)] =
1

8πG

∫

∆
[δ1ϕδ2κ− δ1ϕδ2κ]na (5.1)

a version of the known fact that the area ϕ and the surface gravity κ are canonically conjugate [33].
One subtlety remains, though. A variation of ϕ will typically “move the horizon,” changing the
locus of points Dϕ = 0. This will not matter for the symplectic form, since Ω∆ is independent
of the integration contour.‡ For the variation of an object such as a Hamiltonian defined as an
integral over ∆, however, we shall have to take this change into account. The diffeomorphism
needed to “move the horizon back” is determined by the condition that

(δ + δζ)(Dϕ) = δ(Dϕ) + ζa∇a(Dϕ) , 0 ⇒ ζa = ζ̄na = −
Dδϕ

D̄Dϕ
na (5.2)

‡As noted in section 4, Ω∆ can change by boundary terms if the ends of the Cauchy surface move. Avoiding this
requires that δ(Dϕ) = 0 at the bifurcation point B of figure 1.
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and hence

δ

∫

∆
H na =

∫

∆
(δH + ζa∇aH )na (5.3)

6 Symmetries and approximate symmetries

The action (3.1) is, of course, invariant under diffeomorphisms, including horizon “supertrans-
lations” [34] generated by vector fields ξa = ξℓa. Such diffeomorphisms fail to respect condition 3
of the preceding section, however, since ℓaδξna 6= 0. This is easily cured, by supplementing each
diffeomorphism with a local Lorentz transformation δℓa = (δλ)ℓa, δna = −(δλ)na with δλ = Dξ.
By (3.5), this requires that D̄ξ , 0. We thus have an invariance

δξℓ
a = 0, δξn

a = −(D + κ)ξ na

δξgab = −(D + κ)ξ gab

δξϕ = ξDϕ with D̄ξ , 0 (6.1)

As noted some time ago [22], the action also has an approximate invariance under certain shifts
of the dilaton near a black hole horizon, with an approximation that can be made arbitrarily good
by restricting the transformation to a small enough neighborhood of ∆. Consider a variation

δ̂ηϕ = ∇a(ηℓ
a) = (D + κ)η with D̄η , 0 (6.2)

(where the hat on δ̂ distinguishes it from a diffeomorphism). The action transforms as

δ̂ηI =
1

16πG

∫

M

(

R+
dV

dϕ

)

δ̂ηϕ ǫ = −
1

16πG

∫

M

η

[

DR+
d2V

dϕ2
Dϕ

]

ǫ (6.3)

But Dϕ and DR both vanish at the horizon, so the variation (6.3) can be made as small as one
wishes by choosing η to fall off fast enough away from ∆.

There is one remaining subtlety. While the transformation (6.2) does not directly act on
the curvature, the change of ϕ moves the horizon, and DR may no longer vanish at the new
location. The displacement of the horizon is characterized by the diffeomorphism (5.2), and can
be compensated with a “small” (order Dϕ) Weyl transformation of the metric to restore the
condition DR , 0. It may be shown that on shell, the required transformation is

δ̂ηgab = δ̂ωη gab with δ̂ωη = −
1

2D̄Dϕ

d2V

dϕ2
Dϕη (6.4)

Like (6.2), the Weyl transformation (6.4) changes the action only by terms proportional to ηDϕ,
which can be made arbitrarily small by choosing η to fall off fast enough away from ∆.

We should also check the variation of the equations of motion (3.2a)–(3.2b). These are, of
course, preserved by diffeomorphisms, so we need only consider the transformations (6.2) and
(6.4). Since we are assuming that η falls off rapidly away from the horizon, it is enough to check
the variations at ∆. By a straightforward computation, most of the equations of motion are
preserved: up to terms that are themselves proportional to the equations of motion,

gabδ̂ηEab , 2(D + κ)D̄δ̂ηϕ+
dV

dϕ
δ̂ηϕ , 0 (6.5a)

nanbδ̂ηEab , D̄2δ̂ηϕ− D̄ϕD̄δ̂ηω , 0 (6.5b)

δ̂η

(

R+
dV

dϕ

)

, δ̂ηR+
d2V

dϕ2
δ̂ηϕ , 0 (6.5c)
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The remaining variation, ℓaℓbδ̂ηEab, is not zero. But this is actually a familiar occurrence in
conformal field theory. If we set Eab = 8πGTab, we find that

ℓaℓbδ̂ηTab ,
1

8πG
(D − κ)D(D + κ)η (6.6)

which is essentially the usual anomaly for a conformal field theory with a central charge propor-
tional to 1/G [35]. This is our first indication that the symmetry is anomalous.

7 Canonical generators and their algebra

At the horizon, the symmetries of the preceding section obey an algebra

[δξ1 , δξ2 ]f , δξ12f with ξ12 = −(ξ1Dξ2 − ξ2Dξ1)

[δ̂η1 , δ̂η2 ]f , 0

[δξ1 , δ̂η2 ]f , δ̂η12f with η12 = −(ξ1Dη2 − η2Dξ1) (7.1)

This may be recognized as a BMS3 algebra, or equivalently a Galilean conformal algebra [36].
We must now ask whether these transformations can be realized canonically as in (4.4), that is,
whether there exist generators that satisfy

δL[ξ] =
1

8πG

∫

∆
[δϕ δξκ− δξϕδκ] na =

1

8πG

∫

∆
[δϕD(D + κ)ξ − ξDϕδκ] na (7.2a)

δM [η] =
1

8πG

∫

∆

[

δϕ δ̂ηκ− δ̂ηϕδκ
]

na =
1

8πG

∫

∆

[

−δκ(D + κ)η +
1

2

Dδϕ

D̄Dϕ
η
d2V

dϕ2
Dϕ

]

(7.2b)

where variations of the generators must include the horizon displacement described by (5.3), and
the covariant phase space formalism allows us to impose the equations of motion after variation.

It is not at all clear that such generators exist: there is no obvious reason that the near-horizon
symmetry (6.2) should have a canonical realization. In fact, though, the quantities

L[ξ] =
1

8πG

∫

∆

[

ξD2ϕ− κξDϕ
]

na (7.3a)

M [η] =
1

8πG

∫

∆
η

(

Dκ−
1

2
κ2

)

na (7.3b)

do the job. Using (4.6), we find Poisson brackets§

{L[ξ1], L[ξ2]} = L[ξ12] (7.4a)

{M [η1],M [η2]} , 0 (7.4b)

{L[ξ1],M [η2]} ,M [η12] +
1

16πG

∫

∆

(

Dξ1D
2η2 −Dη2D

2ξ1
)

na (7.4c)

with ξ12 and η12 as in (7.1). The canonical generators thus give a representation of the symmetry
algebra, but with an added off-diagonal central term. The appearance of such central terms is well-
understood in classical mechanics [37]; a similar phenomenon in (2+1)-dimensional gravity [38]
was critical for the first counting of microstates of the BTZ black hole [6, 7].

§The first of these holds even if Dϕ 6= 0. The second and third do not—the η transformations are exact symmetries
only on a horizon—but the deviations are of order (Dϕ)2.
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8 Modes, zero-modes, and entropy

Given the BMS3 algebra (7.4a)–(7.4c), we may use the results of section 2 to determine an
entropy. We must first find a mode decomposition of the generators. For a black hole with constant
surface gravity, the appropriate modes are of the form einκv, where v is the advanced time along
the horizon, normalized so that ℓa∇av = 1. Such modes are periodic in imaginary time with
period 2π/κ, as required for nonsingular Greens functions. For us, κ is not constant, but we can
generalize the periodic modes by defining a phase ψ for which

Dψ , κ, D̄ψ , 0 ⇔ dψ , −κna ⇔ ψ , −

∫

∆
κna , −

∫

κdv (8.1)

The modes are then

ζn ,
1

κ
einψ (where ζ is either ξ or η) (8.2)

where the prefactor of 1/κ is chosen so that {ζm, ζn} = ζmDζn−ζnDζm = −i(m−n)ζm+n. Setting
Ln = L[ξn] and Mn =M [ηn], our BMS3 algebra reduces to (2.1), with a central term

1

16πG

∫

∆

(

DξmD
2ηn −DηnD

2ξm
)

na =
i

8πG

∫

∆
mn2ei(m+n)ψdψ (8.3)

If we take the integral to be over a single period—essentially mapping the problem to a circle, as
is standard in conformal field theory—we obtain a central charge of

cLM =
1

4G
(8.4)

We also need the zero-modes of L and M . For M , this is straightforward: from (7.3b),

M0 =M [η0] = −
1

16πG

∫

∆
κna =

1

16πG

∫

dψ =
1

8G
(8.5)

For L, the “bulk” contribution to L0 vanishes. But L, unlike M , has a boundary contribution.
Indeed, the variation leading to (7.2a) involves integration by parts, with a boundary term

δL[ξ] = · · ·+
1

8πG
(ξDδϕ− (D + κ)ξ δϕ)

∣

∣

∣

∂∆
(8.6)

As noted in section 5, the covariant phase space approach requires us to set Dδϕ to zero at the
bifurcation point B. We should certainly not hold ϕ itself fixed, though, since that would fix ϕ
along the entire horizon, eliminating the η symmetry. Instead, we should fix the conjugate variable
κ at B. This requires an added boundary contribution to cancel the variation (8.6),

Lbdry

0 =
1

8πG
ϕ(D + κ)ξ0

∣

∣

∣

B
=

ϕ+

8πG
(8.7)

where ϕ+ is the value of ϕ at B. Inserting (8.4), (8.5), and (8.7) into (2.3), we finally obtain

S =
ϕ+

4G
(8.8)

precisely the correct Bekenstein-Hawking entropy.

8



9 Conclusions

We have seen that black hole entropy is indeed governed by horizon symmetries. In contrast to
previous efforts, this derivation requires no stretched horizon and no extra angular dependence or
other ad hoc ingredients. The main assumptions are merely that dimensional reduction is possible
and that the horizon obeys the “boundary conditions” of section 5.

How should we think about the resulting BMS symmetry? It is not a gauge symmetry: our
counting arguments imply that states are not invariant, but transform under high-dimensional
representations. Nor is it quite a standard asymptotic symmetry: while we can view the horizon
as a sort of boundary, it is a boundary that exists only for a restricted class of field configurations.
Physically, we are asking a question of conditional probability—if a black hole is present, what
are its properties?—and the symmetries reflect this condition. In some sense, this is analogous to
entanglement entropy, which requires a similar specification of a boundary.

There are obvious directions for generalization. Dimensional reduction picks out the relevant
parts of the geometry, but it would be good to explicitly lift the argument to higher dimensions.
We should clarify the relationship between the symmetries of this paper and other appearances of
BMS symmetry at the horizon [34, 39–42], as well as the related horizon symmetry used by Wall
to prove the generalized second law [43]. It should be feasible to significantly relax the boundary
conditions of section 5. It may also be possible to make the concept of “approximate symmetry” in
section 6 more precise. In this regard, note that the shift parameter η appears in the variation of
the action with no transverse derivatives, and can also be rescaled by a constant without changing
the algebra, so both its value and its support can be made arbitrarily small.

Finally, if this symmetry is really responsible for the universal properties of black hole entropy,
it should be present, if perhaps hidden, in other derivations of entropy. Hints of such a hidden
symmetry have been found for loop quantum gravity [44], induced gravity [45], and perhaps near-
extremal black holes in string theory [46], but none of these investigations has exploited the full
BMS symmetry. Ideally, we might hope to do even more: perhaps our BMS symmetry can be
used to couple the black hole to matter and obtain Hawking radiation, as Emparan and Sachs did
for the (2+1)-dimensional black hole [47].
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