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We investigate dynamical three-body correlations in the Bose gas during the earliest stages of
evolution after a quench to the unitary regime. The development of few-body correlations is the-
oretically observed by determining the two- and three-body contacts. We find that the growth of
three-body correlations is gradual compared to two-body correlations. The three-body contact os-
cillates coherently, and we identify this as a signature of Efimov trimers. We show that the growth
of three-body correlations depends non-trivially on parameters derived from both the density and
Efimov physics. These results demonstrate the violation of scaling invariance of unitary bosonic
systems via the appearance of log-periodic modulation of three-body correlations.
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Introduction. In the ultracold regime of bosonic gases,
where the interaction is well-characterized by the s-wave
scattering length, a, macroscopic theories of matter can
be formulated from microscopic Hamiltonians. These
theories relate few-atom physics to their manifestations
in macroscopic observables. At the heart of this link
is a set of universal relations due to Shina Tan [1–3].
The Tan relations provide an alternative path to calcu-
late thermodynamical properties of an ultracold quan-
tum gas by studying analytic solutions of the two-body
problem and extracting the extensive two-body contact
density C2, which characterizes two-body correlations at
short distances within the system. These relations are
well-understood for two-component Fermi gases even in
the unitary regime n|a|3 � 1, where n is the atomic den-
sity, and have been verified experimentally [4, 5]. For
strongly-interacting Bose gases, there is an additional
complication due to the existence of the three-body Efi-
mov effect. At unitarity (a → ∞) an infinity of three-
body trimers emerges, which strongly alter scattering
observables at ultracold energies [6–9]. Here, universal
relations between few-body physics and macroscopic ob-
servables involve also the three-body contact density C3
[10, 11], central to the many-body theory, and whose
properties are not yet theoretically known for the de-
generate Bose gas in the unitary regime.

Unlike two-component unitary Fermi gases, strongly-
interacting Bose-condensed gases are plagued by an en-
hanced three-body loss rate growing as n3a4, limit-
ing the development of correlations. By quenching
the interactions from weak to unitarity, Makotyn et
al. [12] observed saturation of the single-particle mo-
mentum distribution—an observable sensitive to few-
body correlations—of the quenched unitary degenerate
Bose gas on a timescale shorter than the observed atom
loss rate. It has been suggested that the observed tail
of the saturated momentum distribution oscillates log-
periodically, the signature of Efimov physics, and there-
fore is a measurement of nonzero C3 [13, 14]. For the
thermal unitary Bose gas, C3 has been measured inter-

ferometrically in Fletcher et al. [15] approaching the the-
oretical saturation value from Ref. [14].

Introducing additional length scales due to Efimov
physics can break the continuous scale invariance of
system properties with the interparticle spacing n−1/3.
Within the universality hypothesis, all properties of uni-
tary quantum gases depend solely on the density [16]. For
bosons or fermions, the only relevant scales in the univer-
sal theory are set by the momentum ~kn = ~(6π2n)1/3,
energy En = ~2k2

n/2m, and time tn = ~/En where
m is the atomic mass. Although C2 within the non-
equilibrium regime is well-studied [17–19], predicting the
time evolution, scaling properties, and saturation value
of C3 remains an open problem, limiting our full under-
standing of the role of Efimov physics in quenched uni-
tary Bose gases.

In this Letter, we theoretically observe the growth of
the dynamical three-body contact density C3 immediately
following the quench to unitarity. We have developed a
simple model that describes the early correlation dynam-
ics of the quenched unitary Bose gas using analytic so-
lutions of the three-body problem [20]. At the earliest
stages of evolution, we find that the three-body contact
grows slowly compared to the two-body contact and ex-
hibits coherent oscillations at the frequency of Efimov
trimers. Our results demonstrate that the violation of
the continuous scale invariance of C3 at early-times is
maximized whenever the size of an Efimov trimer is com-
parable to the interparticle spacing.

Relations at short distances. We begin by establish-
ing short distance connections between two- and three-
body correlations of a Bose gas, two- and three-body con-
tacts, and solutions of the few-body problem. These con-
nections are made at distances larger than the van der
Waals length, rvdW, but smaller than other length scales
of the problem (a, n−1/3, etc.) This is done for a uniform
gas of N particles in volume V with density n = N/V ,
which can be generalized to trapped gases using the local-
density approximation where n is the average density 〈n〉.

Within the zero-range model for the interatomic inter-
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actions, the short distance behavior of the two- and three-
body correlation functions is determined exclusively by
the two- and three-body contacts (see Ref. [11])

g(2)(r, t) =
|r|→0

1

16π2n2r2
C2, (1)

g(3)(R,Ω, t) =
R→0

|Ψsc(R,Ω)|2 8

n3s2
0

√
3
C3, (2)

where s0 ≈ 1.00624 is Efimov’s universal constant
for three identical bosons [21]. Center of mass depen-
dence in the equations above has been suppressed due
to translational invariance. The relative atomic config-
uration is parametrized by Jacobi vectors r ≡ r2 − r1
and ρ ≡ (2r3 − r1 − r2)/

√
3. Alternatively, it can be

parametrized by the hyperradius R2 ≡ (r2 + ρ2)/2 and
the set of hyperangles Ω = {α, r̂, ρ̂}, containing the hy-
perangle α = arctan(r/ρ) and spherical angles for each
Jacobi vector. The limit notation in Eqs. (1)–(2) indi-
cates |r| → 0 for fixed r̂, and R→ 0 for fixed Ω, respec-
tively. Ψsc(R,Ω) is the zero-energy three-body scattering
wave function

Ψsc(R,Ω) =
1

R2
sin

[
s0 ln

R

Rt

]
φs0(Ω)√
〈φs0 |φs0〉

, (3)

where Rt/rvdW ∈ [1, eπ/s0 ] is the three-body parame-
ter, setting the phase of log-periodic oscillations, and
φs0(Ω) is the hyperangular wave function for three iden-
tical bosons in the state of lowest total angular momen-
tum. [For analytic expressions of φs0(Ω) and 〈φs0 |φs0〉,
we refer the reader to Ref. [22–24].]

After the interaction quench—amounting within our
model to a quench of the Bethe-Peierls contact boundary
condition at r = 0—the contact dynamics occur exclu-
sively at short distances. Therefore, the short-time short-
range behavior of few-body wave functions can yield
quantitatively correct predictions for the contact dynam-
ics of a quenched many-body system [18, 25]. Generally,
if a particle is measured at a location defining the origin
of a coordinate system, then ng(2)(r, t) is the probabil-
ity density for measuring another particle at r [26]. In
a three-body model, that probability density is given in
terms of the three-body wave function Ψ(r,ρ, t). We are
interested in this probability density at short distances
where C2 is defined, suggesting the relation

ng(2)(r, t) =
|r|→0

2

∫
d3r3,12|Ψ(r,ρ, t)|2, (4)

where r3,12 = ρ
√

3/2. Additionally, the quantity
n2g(3)(R,Ω, t) is the probability density of finding two
other particles at locations defined by the three-body
configuration (R,Ω). The analogous relation between
the three-body correlation function and the three-body
wave function is

n2g(3)(R,Ω, t) =
R→0

2 |Ψ(R,Ω, t)|2. (5)

The factor of 2 in Eqs. (4)–(5) is due to the indistin-
guishability of particles not fixed at the origin.
Initial conditions. To make the links in Eqs. (4)–(5)

quantitatively correct, we employ an unambiguous cal-
ibration scheme. The three-body model yields correct
short-time predictions of the contacts if and only if the
initial wave function satisfies Eqs. (4) and (5) at t = 0.
To model the quench, we start from the non-interacting
limit where g(2)(r, 0) = g(3)(R,Ω, 0) = 1. There is free-
dom in the choice of the initial three-body wave function
satisfying these initial conditions. Here, we choose

Ψ0(R,Ω) = Ae−R
2/2B2

1

[
1−

(
R

B2

)2
]
, (6)

where the analytic expression for the normalization con-
stant A is given in Ref. [22]. Setting B1 ≈ 0.6009n−1/3

and B2 ≈ 1.1278n−1/3 satisfies both initial condi-
tions. With this calibration scheme, predictions for
short-time short-distance correlation phenomenon for
quenched many-body systems should not depend on the
long-range part of the few-body wave function. This
was demonstrated for two-body correlations in one- and
three-dimensions in Refs. [18, 25].
Three-body model at unitarity. After the quench to uni-

tarity, the initial wave function [Eq. (6)] is projected onto
eigenstates at unitarity, for which we utilize solutions for
three harmonically confined bosons given in Ref. [20].
These eigenstates serve only as a convenient basis on
which to expand the problem. At unitarity within the
zero-range model, the relative three-body eigenstates can

be factorized as Ψs,j(R,Ω) = NF (s)
j (R)φs(Ω)/R2 sin 2α,

where N is a normalization factor, and s is a solution of a
transcendental equation resulting from the Bethe-Peierls
contact condition taken at unitarity (see Ref. [22]). The

hyperradial wave functions F
(s)
j (R) obey [20][

− ~2

2m

(
d2

dR2
+

1

R

d

dR

)
+ Us(R)

]
F

(s)
j (R) = EF

(s)
j (R),

(7)
where Us(R) = ~2s2/(2mR2) + mω2

0R
2/2 is a sum of

the effective three-body potential in channel s and of the
local harmonic trap with frequency ω0 and trap length
aho =

√
~/mω0. The index j labels eigenstates within a

channel, and E is the three-body relative energy.
To connect with the short distance behavior of three-

body correlations, we consider the R → 0 behavior
of the hyperradial eigenstates. For s > 0, the limit-

ing behavior is F
(s)
j (R) ∝ O(Rs), which does not con-

tribute to the short-range three-body correlations. The
only channel contributing to three-body correlations at
short distances is associated with the lone imaginary so-
lution of the transcendental equation denoted s = is0,
giving rise to the attractive 1/R2 three-body potential
that produces the Efimov effect. The limiting behavior
of the hyperradial eigenstates in the Efimov channel is
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F
(s0)
j ∝ sin[s0 ln(R/Rt)], and the eigenenergies E

(j)
3b are

obtained from solving

arg Γ

[
1 + is0 − E(j)

3b /~ω0

2

]
+s0 ln

Rt
aho

= arg Γ [1 + is0] ,

(8)
which is evaluated mod π. In the free-space limit
(ω0 → 0), there exist an infinite number of bound Efimov
trimers whose energies and sizes are characterized by the
log-periodic geometric scaling [6–9, 27]:

E
(j)
3b =

E
(0)
3b

(eπ/s0)2j
and R

(j)
3b =

√
2(1 + s2

0)

3

(eπ/s0)j

κ∗
, (9)

where j = 0, 1, ...,∞ [28]. We choose Rt such that there is

a trimer with energy E
(0)
3b = ~2κ2

∗/m ≈ 0.051~2/mr2
vdW

in the free space limit of Eq. (8). κ∗ is the universal
three-body parameter found in Ref. [29].

Post-quench dynamics of C3. Given the initial con-
dition in Eq. (6), the solution after quenching is

Ψ(R,Ω, t) =
∑
s,j cs,jΨs,j(R,Ω)e−iE

(j)
3b t/~, with overlaps

cs,j = 〈Ψs,j |Ψ0〉 (see Ref. [22].) This sum runs over all
channels, however, the Efimov channel makes the sole
contribution to the short-range behavior of three-body
correlations at unitarity. Dominant contributions come
from only a few trimers (E3b ≤ 0) and trapped states
(E3b > 0) with eigenenergies comparable in magnitude
with En [17]. At short-range, the relevant behavior of
each eigenstate in the Efimov channel is captured by the

extensive three-body contact C
(j)
3 , which we have cal-

culated analytically (see Ref. [22]). Intuitively, the dy-
namical three-body contact density can be written as a

superposition of C
(j)
3 by combining Eqs. (2) and (5) and

integrating over the hyperangles

C3 =
n

3

∣∣∣∣∣∣
∑
j

cs0,j × eiφj

√
|C(j)

3 | e−iE
(j)
3b t/~ e−Γjt/2~

∣∣∣∣∣∣
2

,

(10)
where φj =

R→0
arg[Ψs0,j/Ψsc]. Here, we account for three-

body losses by utilizing a relation from Refs. [11, 14] to

estimate finite widths Γj = C
(j)
3 4~η/ms0 valid in the

limit where the inelasticity parameter satisfies η � 1.
We assume that this relation is satisfied in the remain-
der of this Letter. As a result of the finite width, the
time evolution of three-body eigenstates at unitarity is

updated E
(j)
3b → E

(j)
3b − iΓj/2, which leads to a decay of

the norm and the form of Eq. (10).
Hidden in Eq. (10) is a dependence of C3 on long-

range details of the three-body model. However, the
post-quench three-body contact dynamics should depend
only on the behavior of the three-body wave function at
short distances. We therefore require our results to be
robust to variations of both the trapping parameters [see
Eq. (7)] and the arbitrary functional form of Ψ0 [Eq. (6)]
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FIG. 1: (color online) Post-quench dynamics of dimensionless,
scaled two- and three-body contacts over a range of densities.
Evolution of the two-body contact is given by the univer-
sal growth rate n−4/3C2 = 128π/(6π2)2/3t/tn from Ref. [18],
which quickly increases beyond the plotted range. This be-
havior is known and therefore not shown.

provided the initial boundary conditions are satisfied. By
investigating the sensitivity of our results to these varia-
tions [see [22]], we find that these criteria are satisfied at
the earliest stages of evolution even for loose traps sup-
porting more than a few trimers. Beyond t/tn . 0.5 our
results develop dependence on the long-range details of
the model, and we truncate the analysis. Additionally,
at later times our model loses physical significance as we
expect genuine many-body effects play a role in the cor-
relation dynamics. These constraints echo the findings of
Refs. [17, 18].

Early-time evolution of the two- and three-body con-
tacts in the unitary regime is shown in Fig. 1 over a range
of densities. Our three-body contact results are specific
to 85Rb, depending on rvdW, m, and η. We take η = 0.06
from experimental measurements in Ref. [30]. Qualita-
tively, the contact dynamics agree with the experimental
observation in Ref. [15] that the three-body contact de-
velops gradually compared to the two-body contact. In-
terpreting C2 as the number of pairs per (volume)4/3 and
C3 as the number of triples per (volume)5/3 [1–3, 14], we
find support for the sequential buildup of clusters [31, 32].
Unlike the early-time behavior of n−4/3C2 obtained in
Refs. [17, 18], the behavior of n−5/3C3 in Fig. 1 varies for
different densities. This is a strong indication of scaling
violations in the dynamics of three-body correlations at
short-distances discussed below.

Curiously, for densities n = 1010 cm−3 and 1014

cm−3 the corresponding n−5/3C3 curves in Fig. 1 ex-
hibit a visible oscillation on a timescale shorter than
tn. By eliminating contributions of specific eigenstates to
Eq. (10), their origin can be isolated to the Efimov trimer

with binding energy nearest En satisfying |E(j)
3b | � En.
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FIG. 2: (color online) Dynamical surface of n−5/3C3 over
a range of densities. A “rippling” effect due to the coher-
ent trimer oscillations occurs as the “peaks” are approached
from lower densities. This behavior is repeated for densities
rescaled by powers of e3π/s0 .

Specifically, the oscillation is due to coherences between
this trimer and states with energy comparable to En,
resulting in a beating phenomenon [33]. As the energy
of this trimer approaches En for increasing density, the
frequency of the visible oscillations, as well as their am-
plitude, increases as shown in Fig. 2. Empirically, we ob-
serve that the frequency and damping rate of the oscilla-

tions correspond roughly to the frequency ω
(j)
3b = E

(j)
3b /~

and width Γj of this trimer, respectively. The trimer
oscillations are therefore under-damped and theoreti-

cally observable provided |E(j)
3b | > Γj , obtained whenever

η < s0/4 [see Ref. [22].] Oscillation maxima occur at

fixed values of the phase |E(j)
3b t|/~ = 1.33(11)π mod 2π.

For the highest and lowest densities in Fig. 1, oscillation
is due to the j = 0 and j = 1 Efimov trimers, respectively.
Populations of the j = 1 trimer in the unitary Bose gas
were recently observed through a double exponential de-
cay of the molecular gas in Ref. [34]. Here, we find ad-
ditional theoretical evidence for three-body bound-state
signatures as coherent beats in the early-time correlation
dynamics.

Scaling Violations. How does Efimov physics alter the
density dependence of the early-time evolution of the
three-body contact? The dynamical surface in Fig. 2 dis-
plays a “rippling” effect due to the density-independence
of the trimer oscillation phase discussed previously. A
pair of pronounced “peaks” in Fig. 2 are due to the vari-
ation of the trimer oscillation amplitude with density. We
find identical results for n−5/3C3 for densities rescaled by
powers of (eπ/s0)3 when plotted as a function of t/tn.
Therefore, the surface in Fig. 2 represents only a sin-
gle log-period, demonstrating that n−5/3C3 has a discrete
scale-invariance as a consequence of Efimov physics.

With this in mind, we study the envelope of the log-
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FIG. 3: (color online) Profiles of n−5/3C3 at fixed t/tn. Solid
lines are guides for the eye connecting data from Fig. 2.

periodic modulation of n−5/3C3 shown in Fig. 3. To char-
acterize the correlation trends, we propose a functional
form for the growth of three-body correlations which is
quadratic in time to leading order

n−5/3C3 = A [1 +B ×H(n, κ∗, t)] (t/tn)2, (11)

where H(n, κ∗, t) = H(ne3jπ/s0 , κ∗, t) ∈ [0, 1] is an
unknown log-periodic function reflecting the influence
of Efimov physics. The first term above, propor-
tional to A, captures the continuous scale invariant part
of the three-body contact, corresponding to the floor
[min(n−5/3C3)] of the curves in Fig. 3. In the sec-
ond term above, the quantity B is the fractional am-
plitude of the log-periodic modulation [max(n−5/3C3) −
min(n−5/3C3)]/min(n−5/3C3) at fixed t/tn, quantifying
the violation of the continuous scale invariance. From fit-
ting our data at early-times t/tn � 1, we find A ≈ 0.55,
and B ≈ 3.09. Therefore the early-time evolution of
three-body correlations is in general poorly-captured by
fitting to a universal function with continuous scaling
invariance. In Ref. [14] the restrictive assumption was
made that the saturated value of C3 scales continuously
as n5/3 with numerically suppressed log-periodic effects.
Over the density range 1.6 − 5.5 × 1012 cm−3 fit in
Ref. [14], we find that H(n, κ∗, t) is slowly-varying with
density, providing only a minor correction to the contin-
uous scaling law. Hence fitting to a universal scaling law
is sufficient over this limited density range, failing over a
broader range as H becomes significant.

Comparing Eq. (11) to our data, we infer the behav-
ior of H(n, κ∗, t), quantifying the violation of scale in-
variance at particular densities and times. Within our
model, the maximum of this unknown function occurs
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for densities satisfying

R
(j)
3b × kn = 0.74(5), (12)

where j is any trimer index as in Eq. (9). When Eq. (12)
is satisfied, the size of the trimer responsible for the co-
herent oscillation is comparable to k−1

n and therefore the
interparticle spacing. This results in a correlation en-
hancement. Similarly, recent results in Refs. [35, 36] for
the Bose polaron problem suggest that when the size of
Efimov trimers become comparable to the interparticle
scaling, signatures of Efimov physics become visible in
the polaron spectrum.

Conclusion. We have studied the early-time dynam-
ics of the three-body contact density for the quenched
unitary Bose gas. The relative growth of the two- and
three-body contacts indicates that triples are generated
slower than pairs of atoms immediately after the quench.
Efimov physics arises through coherent oscillations of the
three-body contact, a bound state signature of trimers,
and through the violation of continuous scale invariance.
Our methodology can be extended to analyze three-body
contact dynamics for quench scenarios away from uni-
tarity within the zero-range model, which is beyond the
scope of this Letter (see Ref. [22].) It is of interest to ex-
tend this analysis to later times beyond the range of our
model and to observables depending functionally on the
three-body contact. These investigations may suggest
regimes of interest for experiments, which have covered
to date [12, 15, 34, 37] a fraction of the log-period studied
in this Letter. Preliminary observations of the decay rate
over a wider range of densities display oscillations [38].
With an increase of signal to noise of the measurements
in Ref. [12], it may be possible to observe scale-violations
and coherent trimer oscillations predicted in this Letter
or through time-resolved RF spectroscopy [see Ref. [39].]
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