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Microwave detection of electron-phonon interactions
in a cavity-coupled double quantum dot
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Quantum confinement leads to the formation of discrete electronic states in quantum dots. Here
we probe electron-phonon interactions in a suspended InAs nanowire double quantum dot (DQD)
that is electric-dipole coupled to a microwave cavity. We apply a finite bias across the wire to drive
a steady state population in the DQD excited state, enabling a direct measurement of the electron-
phonon coupling strength at the DQD transition energy. The amplitude and phase response of the
cavity field exhibit oscillations that are periodic in the DQD energy level detuning due to the phonon
modes of the nanowire. The observed cavity phase shift is consistent with theory that predicts a
renormalization of the cavity center frequency by coupling to phonons.

PACS numbers: 03.67.Lx, 73.21.La, 42.50.Pq, 85.35.Gv

Phonons, the quantized lattice vibrations in a crys-
talline solid, are ubiquitous in condensed matter systems
and impact the properties of bulk and nanostructured
materials. For example, Raman scattering measurements
provide a detailed probe of the phonon density of states
in carbon nanotubes [1] and it is now known that phonons
limit the maximum current in single nanotube devices [2–
4]. Similarly, spin relaxation in semiconductors is gener-
ally governed by processes that involve phonon emission
[5–7]. Electronic relaxation processes involving phonons
can even be harnessed to cool mechanical degrees of free-
dom in nanostructures [8, 9].

Semiconductor double quantum dots (DQDs) are well-
suited for probing electron-phonon coupling [10–14] since
inelastic interdot tunneling generally involves sponta-
neous emission of a phonon in order to conserve en-
ergy [15]. Moreover, the DQD energy level difference is
electrically tunable, which allows the effective electron-
phonon coupling strength to be probed as a function
of phonon energy. Confinement can further influence
phonon modes in nanostructures and new methods of
controlled nanowire placement [16, 17] may allow for
careful engineering of the phonon spectrum in semicon-
ductors, similar to recent optomechanics experiments
with suspended carbon nanotubes [18–20].

In this Letter, we investigate the interplay of elec-
trons, phonons, and photons in a cavity-coupled InAs
nanowire DQD which is mechanically suspended in vac-
uum. The interaction of photons and electrons in DQDs
has been studied extensively in the circuit QED architec-
ture, where the charge dipole of a DQD is coupled to a mi-
crowave cavity [21–23]. A phonon sideband has recently
been observed in DQD masers that are driven by single
electron tunneling [24] and related theory suggests that
the detailed energy-dependence of the one-dimensional
nanowire phonon spectral density should have observable
consequences in the photon emission rate [25], although
this has not yet been observed. Here we measure the
dc current I as a function of DQD energy level detun-
ing ε and show that it exhibits periodic oscillations that
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FIG. 1. (a) Schematic representation of the suspended InAs
nanowire DQD. (b) Tilted angle SEM image of the device.
(c) Energy level configuration of the DQD, which is placed
inside a microwave cavity and probed by a weak microwave
field. (d) Optical image of the microwave cavity in (c) (upper
panel), and tilted angle SEM image showing the electrical
connection between the drain contact of the DQD and the
cavity centerpin (lower panel). The red box indicates the
region shown in (b).

are consistent with the phonon spectral density in a con-
fined nanostructure [13, 14]. Measurements of the cavity
amplitude and phase response reveal the detailed energy
dependence of the electron-phonon coupling and exhibit
a response that is periodic in ε. We employ a microscopic
theoretical model of the device which suggests that the
dispersive cavity phase shift is due to a renormalization
of the cavity center frequency by coupling to phonons
[26].

The suspended nanowire DQD device is shown
schematically in Fig. 1(a). A 50 nm diameter InAs
nanowire [27, 28] is manually placed across two litho-
graphically defined Ti/Au pedestals using a long working
distance optical microscope [16]. The pedestal thickness
results in a 15 nm vacuum gap between the nanowire
and Ti/Au electrostatic back gates (green) (VLW, VL,
VM, VR, VRW) which are used to produce the double-well
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confinement potential. In contrast to earlier experiments
[23, 29], the back gates are not coated with SiNx dielec-
tric. Instead, electrical isolation is achieved using the
vacuum gap, which further confirms that the nanowire is
physically suspended above the back gates. Ti/Au source
(S) and drain (Cavity+D) contacts (red), with a separa-
tion of 380 nm, are deposited on top of the pedestals.
A scanning electron microscope (SEM) image of a repre-
sentative device is shown in Fig. 1(b).

In order to study the interaction of electrons in the
DQD with photons in the cavity and phonons in the
nanowire, the DQD is electric-dipole coupled to the volt-
age antinode of a Nb superconducting transmission line
resonator (Cavity+D) with resonance frequency fc =
7782.8 MHz and quality factor Q ∼ 3050 [24, 30]. A
schematic diagram illustrating the key elements of the
device is shown in Fig. 1(c). The electrical connec-
tion between the DQD and cavity is shown in Fig. 1(d).
Electron-phonon coupling is probed by measuring the dc
current through the DQD and the cavity amplitude and
phase response as a function of ε [31]. Measurements are
performed in a dilution refrigerator with a base temper-
ature T = 10 mK.

Figure 2(a) shows the current I through the device as
a function of the gate voltages VL and VR for VSD =
2.5 mV. Nonzero current is observed within finite bias
triangles, where the chemical potentials µD > µL >
µR > µS . DQD charge states are labeled by (NL, NR),
where NL (NR) is the number of electrons in the left
(right) dot. We are able to reduce the electron number
until no further charge transitions are observed (see the
Supplemental Material [32]), although the data presented
in this paper are taken with NL ≈ NR ≈ 4−6 to increase
the current through the device and therefore the number
of photon emission events [33, 34].

Early experiments on semiconductor DQDs showed
that energy is conserved during inelastic interdot tun-
neling through spontaneous emission of a phonon [15].
Measurements of the current as a function of level
detuning, I(ε), probe the environment at an energy
Ω(ε) =

√
ε2 + 4t2c , where tc is the interdot tunnel cou-

pling. Oscillations in I(ε) were attributed to electron
phonon coupling [13–15]. In contrast with these previ-
ous experiments, our DQD is electric-dipole coupled to a
cavity. Therefore energy can be emitted during interdot
tunneling by processes that involve the emission of both
a phonon and a photon [33], as illustrated in Fig. 1(c).
Due to these higher-order emission processes, we may ex-
pect to see signatures of electron-phonon coupling in the
amplitude and phase response of the cavity.

We first measure the current through the DQD and
search for oscillations in I(ε) which are indicative of tran-
sitions between discrete electronic states that are accom-
panied by the emission of a phonon with energy Ω(ε).
To increase the visibility of the current oscillations at
this particular charge transition we plot ∂2I/(∂VL∂VR)
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FIG. 2. (a) Current I through the DQD as a function of
VL and VR with VSD = 2.5 mV. The interdot level detun-
ing ε is adjusted along the white arrow. (b) Second deriva-
tive ∂2I/(∂VL∂VR) of the data in (a) show periodic oscilla-
tions as a function of ε. (c) I as a function of ε (red) ac-
companied by a simple theory prediction (black) that ac-
counts for phonon emission. In the theory curve we use
the parameters: tc = 22 µeV, J(2tc/~)/2π = 0.3 GHz,
d = 120 nm, ω0/2π = 130 GHz, cn = 2 100 m/s, r = 4×10−3,
ΓL/2π = ΓR/2π = 90 MHz and a nanowire temperature of
200 mK. Inset: dI/dε as a function of ε showing oscillations
with approximately 60 µeV periodicity in ε.

as a function of VL and VR in Fig. 2(b) over the same
gate voltage range as Fig. 2(a). These data reveal oscil-
lations that are present throughout the inelastic region
(ε � 0) of the finite bias triangle. The oscillations are
parallel to the interdot charge transition axis (ε = 0) and
therefore occur at a constant detuning, as expected for a
decay mechanism that primarily depends on Ω(ε). Fig-
ure 2(c) shows that small oscillations are directly visible
in I(ε). A plot of dI/dε (inset) shows that this current
modulation has a periodic spacing of approximately 60
µeV which is consistent with expectations for the energy
scale of phonons in the suspended nanowire device (see
the Supplemental Material [32]) and larger than the en-
ergy scale of cavity photons (hfc ≈ 32 µeV). Current
oscillations with a period of 60± 5 µeV were observed at
more than 10 other charge transitions in the device, at
forward and reverse bias [32].

To better understand the observed oscillations in the
current we model the interaction of the DQD with the
lattice phonons using a spin-boson model [10, 11, 13]

H =
Ω(ε)

2
σz +

∑
k

~ωka†kak + ~
∑
k

λkσx(ak + a†k), (1)



3

where σz is the Pauli matrix acting on the two charge
states of the DQD, ωk is the dispersion of a phonon
mode with index k, λk is an electron-phonon interac-
tion matrix element, and ak are bosonic operators for
the phonon modes. A key quantity in this model is the
phonon spectral density J(ν) =

∑
k |λk|2δ(ν−ωk), which

we approximate by the contribution from the lowest en-
ergy longitudinally polarized mode of the nanowire and
a background term arising from other phonon modes in
the system [25]

J(ν) =
J0d

cnν
sin2(νd/cn)e−ν

2/2ω2
0 + Jb(ν), (2)

Jb(ν) = rJ0
νcn
d

[1− sinc(νd/cn)]e−ν
2/2ω2

0 , (3)

where J0 is a constant scale factor, cn is the phonon
speed of sound, d is the spacing between the dots, ω0 is a
cutoff frequency that scales with the size of each dot, and
r scales the relative contribution from the background.
Numerical values of the fit parameters are listed in the
caption of Fig. 2. From this idealized model, we see that
the spectral density exhibits oscillations with the phonon
energy ~ν when the DQD spacing d is an integer multiple
of the phonon wavelength 2πcn/ν. This condition allows
a simultaneous vibrational anti-node at the position of
each DQD [10]. Including the tunneling to the left (right)
lead at rate ΓL(R) in the presence of a source-drain bias,
we can derive analytic expressions for the current through
the dot (for details of the derivation, see Refs. [10, 26]).
As seen in the theory curve in Fig. 2(c), modulations
in the phonon spectral density show up directly in the
current because the charge relaxation rate of the DQD
two-level system is directly proportional to J [Ω(ε)/~].

Going beyond previous experiments, we now report the
observation of oscillations in the amplitude and phase
response of the cavity that have the same 60 µeV peri-
odicity as the oscillations observed in the current. The
cavity transmission, A/A0, and phase response, ∆φ, are
investigated in Fig. 3 for the lower finite bias triangle
of the same interdot transition shown in Fig. 2. These
measurements are performed by driving the cavity with
an input tone at fc = 7782.8 MHz resulting in an
intra-cavity photon number nc ≈ 50. The phase re-
sponse of the cavity [Fig. 3(a)] exhibits oscillations that
are once again periodic as a function of detuning (in-
set), and present throughout the finite bias triangle, sug-
gesting they are caused by an energy-dependent decay
mechanism. These features are more clearly visible in
∂2∆φ/(∂VL∂VR) [Fig. 3(b)]. Figure 3(c) shows A/A0 and
∆φ as a function of detuning ε, measured along the same
detuning axis as in Fig. 2(c). At positive detuning, clear
oscillations are visible in ∆φ with a period of approxi-
mately 60 µeV. Data are shown over a larger range of
detuning in the inset. The dip in transmission and large
phase shift near ε = 0 are due to the dispersive interac-
tion of the DQD and cavity photons [23]. The second
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FIG. 3. (a) Cavity phase response ∆φ as a function of VL and
VR near the lower finite bias triangle. (b) Second derivative
∂2∆φ/(∂VL∂VR) of the data in (a). (c) ∆φ and A/A0 as a
function of detuning ε. Inset: Full range of data. The subset
of data shown in the main panel is outlined by the dashed grey
box. A/A0 is normalized to the value in Coulomb blockade.

dip in transmission around ε ≈ 70 µeV may be due to a
low lying excited state, although the energy scale is more
consistent with the periodic oscillations observed in I,
A/A0, and ∆φ. The features that we observe at large
detuning in A/A0 and ∆φ are also independent of small
perturbations in the barrier gate voltage, VM , suggesting
they are a robust consequence of coupling to the phonon
bath.

It is helpful to search for correlations between the os-
cillations observed in the current and the oscillations ob-
served in the cavity response. In general, the energy emit-
ted into the environment during inelastic interdot tunnel-
ing is given by the DQD energy splitting Ω(ε). Energy
can be released into the environment by creating phonons
and cavity photons. Previous experiments show that
roughly one photon is emitted into the cavity mode for
every 103–104 electron tunneling events [33]. Therefore
the electronic current primarily probes the phonon envi-
ronment and should scale as I(ε)/|e| ∝ J [Ω(ε)/~]. In con-
trast, second order processes, where a cavity photon and
phonon are emitted during inelastic tunneling, scale with
the phonon spectral density J(ν) as J [Ω(ε)/~ − 2πfc].
These processes are illustrated in the inset of Fig. 4(a).
For the large level detunings examined here, |ε| � tc, and
Ω ≈ ε. As such, there should be a correlation between the
measured current I(ε) and cavity response A(ε+hfc)/A0.

Figure 4(a) plots I(ε) and A(ε+ hfc)/A0. The y-axes
offsets and data ranges have been adjusted such as to
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FIG. 4. (a) A comparison of I(ε) and A(ε+ hfc)/A0. Inset:
DQD energy level diagram showing the first order emission
of a phonon (blue) or the second order emission of the same
phonon and a photon (green) of energy hfc, which occurs
when ε increases by approximately hfc. (b) ∆φ as a function
of ε (red) and theory fit (black). The theory curve takes into
account the dispersive cavity shift (inset) that is caused by
the coupling of cavity photons to nanowire phonon modes.
These data, and the Fig. 2(c) data, are simultaneously fit.

maximize overlap between the two distinct data sets. For
ε > 0.1 meV there is a strong correlation between I(ε)
and A(ε + hfc)/A0. Both data sets have a very simi-
lar inelastic tail. Moreover, the oscillations in I(ε) oc-
cur at the same values of detuning as the oscillations in
A(ε+hfc)/A0. These data give further evidence that the
oscillations in the current and cavity response are due to
the same electron-phonon coupling mechanism.

The cavity phase response can be modeled using a the-
ory that takes into account the dispersive shift of the cav-
ity (renormalization of the cavity frequency) due to the
DQD-mediated coupling to nanowire phonons [26]. Mea-
surements of ∆φ and best fits to the microscopic theory
are shown in Fig. 4(b). The theoretical predictions for
the dispersive cavity shift due to electron-phonon cou-
pling are shown in the inset of Fig. 4(b). In compari-
son with previous theoretical analysis of these systems
[25, 35], our theory accounts for small energy shifts in
the cavity frequency that arise from resonant coupling
of the cavity photons to the nanowire phonons when the
DQD is in the excited state [26]. The periodic oscilla-
tions in the phase arise because periodic modulations in
the charge relaxation rate lead to a similar modulation
in the excited state population, which shifts the cavity
frequency, as seen in the inset of Fig. 4(b). The micro-
scopic origin of the oscillations in our model is identical
across all three independent measurement techniques of
dc current I, cavity amplitude A/A0, and phase ∆φ [see
Eq. (2)], which provides strong evidence that we have ob-
served direct signatures of the electron-phonon coupling
in this system.

Future work on suspended nanowires could explore the
dependence of the phonon periodicity on the source-drain
electrode spacing. Such experiments could help to re-
solve the conflicting interpretations of the cause of this

periodicity in Refs. [13] and [14]. More broadly, the prin-
ciples of phonon spectrum engineering and measurement
suggested by this work may help to minimize electron-
phonon interaction processes at specific energies. For ex-
ample, single spin relaxation times in III/V semiconduc-
tor quantum dots [36, 37] are due to spin-orbit coupling
and phonon emission [5, 7, 38]. By tailoring the phonon
spectrum, it may be feasible to extend electron spin life-
times in quantum devices [39].

In summary, we have shown that it is possible to cre-
ate a cavity-coupled InAs nanowire DQD that is me-
chanically suspended above the substrate. Consistent
with earlier work, we observe oscillations in the inelastic
current as a function of level detuning due to electron-
phonon couping in the nanowire [13, 14]. Measurements
of the cavity response are also sensitive to electron-
phonon coupling. We couple the electronic dipole mo-
ment of an electron trapped in this DQD to the electric
field of a microwave cavity and observe a periodic cav-
ity phase response due to a dispersive interaction with
nanowire phonons. A comparison of these measurements
with a microscopic theoretical model of the device sug-
gests that the coupling of phonons to photons, mediated
by electron dynamics, results in a phonon renormaliza-
tion of the cavity center frequency. These experiments
broadly help to understand the fundamental nature of
electron-phonon coupling in nanoscale systems and may
provide a path toward mitigating spin decay in semicon-
ductor quantum devices.
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