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Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics.
We extend the static crystal to the dynamic “space-time” crystal characterized by the general inter-
twined space-time periodicities in D + 1 dimensions, which include both the static crystal and the
Floquet crystal as special cases. A new group structure dubbed “space-time” group is constructed
to describe the discrete symmetries of space-time crystal. Compared to space and magnetic groups,
space-time group is augmented by “time-screw” rotations and “time-glide” reflections involving frac-
tional translations along the time direction. A complete classification of the 13 space-time groups in
1+1D is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry
without the half-integer spinor structure, which constrains the winding number patterns of spec-
tral dispersions. In 2+1D, non-symmorphic space-time symmetries enforce spectral degeneracies,
leading to protected Floquet semi-metal states. Our work provides a general framework for further
studying topological properties of the D + 1 dimensional space-time crystal.

The fundamental concept of crystal and the associated
band theory based on the Bloch theorem lay the founda-
tion of condensed matter physics. Studies on the crys-
tal symmetry and band structure topology lead to the
discoveries of topological insulators, topological super-
conductors, the Dirac and Weyl semi-metal states [1–3].
Periodically driving further provides a new route to engi-
neer topological states even in systems originally topolog-
ically trivial in the absence of driving, as explored in the
irradiated graphene [4, 5], semiconducting quantum wells
[6], dynamically modulated cold atom optical lattices [7],
and photonic systems [8, 9]. The periodicity of the quasi-
energy enriches the topological band structures [10–12],
such as the dynamically generated Majorana modes [13],
1D helical channels [14] and anomalous edge states as-
sociated with zero Chern number [15, 16]. Topological
classifications for interacting Floquet systems have also
been investigated [17–21].

For periodically driven crystals, most studies treat the
temporal periodicity separately from the spatial one. In
fact, the driven system can exhibit much richer symme-
try structures than a simple direct product of spatial and
temporal symmetries. In particular, a temporal transla-
tion at a fractional period can be combined with the
space group symmetries to form novel space-time inter-
twined symmetries, which, to the best of our knowledge,
have not yet been fully explored. For static crystals, the
intrinsic connections between the space-group symme-
tries and physical properties, especially the topological
phases, have been extensively studied [22–29]. There-
fore, it is expected that the intertwined space-time sym-
metries could also protect non-trivial properties of the
driven system, regardless of microscopic details.

In this article, we propose the concept of “space-time”
crystal exhibiting the intertwined space-time symmetries,
whose periodicities are characterized by a set of D + 1
independent basis vectors, generally space-time mixed.
The situation of separate spatial and temporal perodic-
ities is a special case and is also included. The full dis-

crete space-time symmetries of space-time crystals form
a class of new group structures – dubbed the “space-
time” group, which is the generalization of space group
by including “time-screw” and “time-glide” operations.
A complete classification of the 13 space-time groups
in 1+1 D is performed, and their constraints on band
structure winding numbers are studied. In 2+1 D, 275
space-time groups are classified. The non-symmorphic
space-time symmetry operations, similar to their static
space-group counterparts, lead to the protected spectral
degeneracies for driven systems, even when the instanta-
neous spectra are gapped at any given time.
Space-time crystal – We consider the time-dependent

Hamiltonian H = P 2/(2m) + V (r, t) in the D + 1 di-
mensional space-time. V (r, t) exhibits the intertwined
discrete space-time translational symmetry as

V (r, t) = V (r+ u
i, t+ τ i), i = 1, 2, ..., D + 1, (1)

where (ui, τ i) = ai is a set of the primitive basis vec-
tors. In general, the space-time primitive unit cell is
not a direct product between spatial and temporal do-
mains. There may not even exist spatial translational
symmetry at any given time t, nor temporal transla-
tional symmetry at any spatial location r. Consequently,
the frequently used time-evolution operator of one period
for the Floquet problem generally does not apply. The
reciprocal lattice is spanned by the momentum-energy
basis vectors bi = (Gi,Ωi) defined through bi · aj =
∑D

m=1G
i
mu

j
m − Ωiτ j = 2πδij . The D + 1 dimensional

momentum-energy Brillouin zone (MEBZ) may also be
momentum-energy mixed.
Generalized Floquet-Bloch theorem We generalize the

Floquet and Bloch theorems for the time-dependent
Schrödinger equation i~∂tψ(r, t) = H(r, t)ψ(r, t). Due
to the space-time translation symmetry, the lattice
momentum-energy vector κ = (k, ω) remains conserved.
Only the κ vectors inside the first MEBZ are non-
equivalent, and those outside are equivalent up to integer
reciprocal lattice vectors. The Floquet-Bloch states la-
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FIG. 1. Folding the band dispersions of the 1+1 D space-time
crystal into the 1st rhombic MEBZ in the weak lattice limit.
The momentum-energy reciprocal lattice vectors of nonzero
VB’s are represented by dashed lines. The low-energy part
of the free dispersion curve evolves to closed loops. (a) Two
loops with the winding numbers wr = (1, 0) (red) and wb =
(0, 1) (blue). (b) An extra nonzero VG connects two loops in
(a) forming a new one with w = wr +wb.

beled by κ take the form of

ψκ,m(r, t) = ei(k·r−ωmt)um(r, t), (2)

where m marks different states sharing the common κ.
um(r, t) processes the same space-time periodicity as
H(r, t), and is expanded as um =

∑

B cm,Be
i(G·r−Ωt)

with B = (G,Ω) taking all the momentum-energy re-
ciprocal lattice vectors. The eigen-frequency ωm is de-
termined through the eigenvalue problem defined as

∑

B′

{[ε0(k +G)− Ω]δB,B′ + VB−B′}cm,B′ = ωmcm,B, (3)

where ε0(k) is the free dispersion, and VB is the
momentum-energy Fourier component of the space-time
lattice potential V (r, t). The dispersion based on Eq. 3
is represented by a D-dimensional surface in the MEBZ
which is a D+1 dimensional torus.

Dispersion winding numbers – The band structure of
the space-time crystal exhibits novel features different
from those of the static crystal. For simplicity, below we
use the 1+1 D case for an illustration. The dispersion re-
lation ω(k) forms closed loops in the 2D toroidal MEBZ,
each of which is characterized by a pair of winding num-
bers w = (w1, w2). Compared to the static case in which
the band dispersion only winds around the momentum
direction, here ω(k) is typically not single-valued and its
winding patterns are much richer. The dispersions in
the limit of a weak space-time potential V (x, t) with a
rhombic MEBZ are illustrated in Fig. 1 (a) and (b),
with details presented in Supplemental Material (S.M.)
Sect. I [30]. When folded into the MEBZ, the free dis-
persion curve ε0(k) can cross at general points not just
on high symmetry ones. A crossing point corresponds to
two equivalent momentum-energy points related by a re-
ciprocal vector G. When VG 6= 0, the crossing is avoided
by forming a gap at the magnitude of 2|VG|. The to-
tal number of states at each k is independent of the
strength of V (x, t), hence crossing can only split along
the ω-direction and dω/dk is always finite. Consequently,

trivial loops with the winding numbers (0, 0) are forbid-
den. Generally, the winding directions of the dispersion
loops are momentum-energy mixed. Furthermore, differ-
ent momentum-energy reciprocal lattice vectors can cross
each other, leading to composite loops winding around
the MEBZ along both directions as shown in Fig. 1 (b).
Hence, in general all patterns (w1, w2) are possible except
the contractible loops.
Space-time group – To describe the symmetry proper-

ties of the D+1 dimensional space-time crystals, we pro-
pose a new group structure dubbed “space-time” group
defined as the discrete subgroup of the direct product of
the Euclidean group in D spatial dimensions and that
along the time-direction ED ⊗ E1. Please note that in
general the space-time group cannot be factorized as
the direct product between discrete spatial and tempo-
ral subgroups. It not only includes space and magnetic
group transformations in the D-spatial dimensions, but
also includes operations involving fractional translations
along the time-direction. Since space and time are non-
equivalent in the Schrödinger equation, space-time rota-
tions are not allowed except the 2-fold case.
To be concrete, a general space-time group operation

Γ on the space-time vector (r, t) is defined as,

Γ(r, t) = (Rr+ u, st+ τ), (4)

where R is a D-dimensional point group operation, s =
±1 and s = −1 indicates time-reversal, and (u, τ) =
∑

imia
i represents a space-time translation with mi ei-

ther integers or fractions. If τ = 0, Γ is reduced to a space
group or magnetic group operation according to s = ±1,
respectively. If τ 6= 0, when (u, τ) contains fractions of
ai, new symmetry operations arise due to the dynamic
nature of the crystal potential, including the “time-
screw” rotation and “time-glide” reflection, which are a
spatial rotation and a reflection followed by a fractional
time translation, respectively. The operation of Γ on
the Hamiltonian is defined as Γ−1H(r, t)Γ = H(Γ(r, t)),
or, Γ−1H(r, t)Γ = H∗(Γ(r, t)) for s = ±1, respectively.
Correspondingly, the transformation MΓ on the Bloch-
Floquet wavefunctions ψκ(r, t) is MΓψκ = ψκ(Γ

−1(r, t)),
or, ψ∗

κ(Γ
−1(r, t)) for s = ±1, respectively.

Now we present a complete classification of the 1+1 D
space-time groups. Due to the non-equivalence between
spatial and temporal directions, there are no square and
hexagonal space-time crystal systems. The point-group
like operations are isomorphic to D2, including reflection
mx, time reversal mt, and their combination mxmt, i.e.,
the 2-fold space-time rotation. Consequently, only two
space-time crystal systems are allowed – oblique and or-
thorhombic. There exist two types of glide reflections:
the time-glide reflection gx, and gt denoted as “glide-
time-reversal” is time-reversal followed by a fractional
translation along the x-direction.
The above 1+1 D space-time symmetries give rise to

13 space-time groups in contrast to the 17 wallpaper
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FIG. 2. The classification of 13 space-time groups in 1+1D
and the associated crystal configurations. The solid oval
marks the 2-fold space-time axis, and the parallelogram means
the 2-fold axis without reflection symmetries. The thick solid
and dashed lines represent reflection and glide-reflection axes,
respectively. Configurations of triangles and the diamond de-
note the local symmetries under reflections. (a) The oblique
lattices with and without 2-fold axes. Their basis vectors are
generally space-time mixed. The primitive (b) and centered
(c) orthorhombic lattices: According to their reflection and
glide reflection symmetries, they are classified to 8 groups in
(b), and 3 groups in (c).

space groups characterizing the 2D static crystals. The
oblique Bravais lattice is simply monoclinic, while the
orthorhombic ones include both the primitive and cen-
tered Bravais lattices. The monoclinic lattice gives rise
to two different crystal structures with and without the
2-fold space-time axes, whose space-time groups are de-
noted by P1,2, respectively, as shown in Fig. 2 (a).
For the primitive orthorhombic lattices, the associated
crystal structures can exhibit the point-group symme-
tries mx and mt, and the space-time symmetries gt and
gx. Their combinations give rise to 8 space-time crystal
structures denoted as Pmx, Pmt, P2mxmt, Pgx, Pgt,
P2gxgt, P2mxgt, P2gxmt, respectively, as shown in Fig.
2 (b). Four of them possess the 2-fold space-time axes
as indicated by “2” in their symbols. For the centered
orthorhombic Bravais lattices, 3 crystal structures ex-
ist with space-time groups denoted as Cmx, Cmy , and
C2mxmt, respectively, as shown in Fig. 2 (c). They all
exhibit glide-reflection symmetries, and the last one pos-
sesses the 2-fold space-time axes as well. Two unit cells
are plotted for the centered lattices to show the full sym-
metries explicitly, and their primitive basis vectors are
actually space-time mixed.

The classifications of the space-time groups in higher
dimensions are generally complicated. A general method

FIG. 3. (a) The Floquet-Bloch band spectrum with the space-
time lattice potential possessing the glide time-reversal sym-
metry gt. When applied to the states with κx = π/λ, gt be-
comes a Kramers symmetry protecting the double-degeneracy.
(b) Lifting the Kramers degeneracy by adding a glide time-
reversal symmetry breaking term.

.

is the group cohomology as presented in Sect II of S.
M. [30]. In particular, the classification of 2+1D space-
time group is outlined in Sect III of S. M. [30], whose
structures are further enriched by spatial rotations and
time-screw rotations. Compared to the 3D static crys-
tals, the cubic crystal systems are not allowed, and two
different monoclinic crystal systems appear with the per-
pendicular axis along the time and spatial directions, re-
spectively. In total, there are 7 crystal systems and 14
Bravais lattices, but 275 space-time groups.
Protection of spectral degeneracy The intertwined

space-time symmetries besides translations can protect
spectral degeneracies. Blow we consider the effects
from the Kramers symmetry without spin and the non-
symmorphic symmetries for the 1+1 D and 2+1 D space-
time crystals, respectively.
Consider a 1+1 D space-time crystal whose unit cell

is a direct product of spatial and temporal periods λ
and T , respectively. We assume the system is invari-
ant under the glide time-reversal operation gt(x, t) =
(x + 1

2λ,−t), whose operation on the Hamiltonian is

defined as g−1
t Hgt = H∗(gt(x, t)). The corresponding

transformation Mgt on the Bloch-Floquet wavefunction
ψκ(x, t) of Eq. 2 is anti-unitary defined as Mgtψκ =
ψ∗
κ(g

−1
t (x, t)). This glide time-reversal operation leaves

the line of κx = π/λ in the MEBZ invariant. Mgt be-
comes a Kramers symmetry for states with κx = π/λ,

M2
gtψκ = ψκ(x− λ, t) = e−iκxλψκ = −ψκ, (5)

without involving the half-integer spinor structure. It
protects the double degeneracy of the momentum-energy
quantum numbers of ψκ and Mgtψκ. Hence the cross-
ing at κx = π/λ cannot be avoided and the dispersion
winding numbers along the momentum direction must
be even.
As a concrete example, we study a crystal poten-

tial with the above spatial and temporal periodicities,
V (x, t) = V0

(

sin 2π
T t cos

2π
λ x+cos 2π

T t
)

. Except the glide
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FIG. 4. (a) The 2+1 D space-time lattice structure of the
Hamiltonian Eq. 7. The bond directions are marked as ~e1,3 =
± 1

2
(x̂+ ŷ), ~e2,4 = ∓ 1

2
(x̂− ŷ). (b) The time-dependent hopping

pattern rotates 90◦ every one quarter period. The bonding
strengths wei(t) of the R, B, G and Y bonds equal 0.2, 3,
−3.2, and 0.5, respectively. (c) The momentum Brillouin zone
with high symmetry points Γ = (0, 0), M = (±π,±π), and
X = (0,±π) and (±π, 0). (d) The dispersions along the cuts
from Γ to X to M to Γ. Two-fold degeneracies appear at X
and M .

time-reversal symmetry, it does not possess other sym-
metries. Its Bloch-Floquet spectrum is calculated based
on Eq. 3, and a representative dispersion loop is plot-
ted in the MEBZ shown in Fig. 3 (a). The crossing at
κx = π/λ is protected by the glide time-reversal symme-
try giving rise to a pair of Kramers doublet. As a result,
the winding number of this loop is w = (wx, wt) = (2, 0).
If a glide time-reversal breaking term δV = V ′

0 cos(
2π
λ x) is

added into the crystal potential, the crossing is avoided as
shown in Fig. 3 (b). Consequently, the dispersion splits
into two loops, both of which exhibit the winding num-
ber (1, 0). Similarly, out of the 8 primitive orthorhombic
space-time crystals, 3 of them, Pgt, P2gxgt, and P2gtmx,
enforce this non-spinor type Kramers degeneracy, while
the other 5 generally does not protect such a degeneracy.
Next we present a 2+1 D Floquet semi-metal state,

whose spectral degeneracies are protected by non-
symmorphic space-time group operations. Consider that
the space-time little group of the momentum k contains
two non-symmorphic space-time group operations g1,2,
both of which do not flip the time direction, hence, they
are represented by unitary operators. If they satisfy

g1g2 = Tg2g1, (6)

where T is a translation of integer lattice vectors. As
shown in Sect. IV in S. M. [30], T can only be a spatial
translation without involving the time denoted as T (u).
Assume k · u = 2πp/q with p and q coprime, we find
that the Bloch-Floquet wavefunctions exhibit a q-fold
degeneracy at the momentum-energy vector κ = (k, ω)

proved as follows. Since g1 belongs to the little group,
ψκ(r, t) can be chosen to satisfy Mg1ψκ,1 = µψκ,1, then
ψκ,Mg2ψκ,M

2
g2ψκ, ....,M

q−1
g2 ψκ are the common Bloch-

Floquet eigenstates sharing the same κ but exhibiting a
set of different eigenvalues of g1 as η, µη, µη2, ..., µηq−1

with η = eiπp/q. Then they are orthogonal to each
other forming a q-fold degeneracy. Compared to the
case of non-symmorphic space group protected degen-
eracy [23, 24, 27], here g1,2 are space-time operations for
a dynamic space-time crystal. For the case that one or
both of g1,2 flip the time direction, the situation is more
involved due to involving anti-unitary operations. Pro-
tected degeneracies are still possible as presented in Sect.
IV in S. M. [30].
We employ a 2+1 D tight-binding space-time model as

an example to illustrate the above protected degeneracy.
A snap shot of the lattice is depicted in Fig. 4 (a), which
consists of two sublattices: The A-type sites are with in-
teger coordinates (i, j), and each A-site emits four bonds
along ~ei to its four neighboring B sites at (i± 1

2 , j ±
1
2 ).

The space-time Hamiltonian within the period T is

H(t) = −
∑

~r∈A, ~r+ a

2
~ei∈B

{

w~ei(t)c
†

~rd~r+ a

2
~ei + h.c.,

}

, (7)

where a is the distance between two nearest A sites, and
w~ei(t)’s are hopping amplitudes with different strengths.
Their time-dependence is illustrated in Fig. 4 (b): Within
each quarter period, w~ei does not vary, and their pat-
tern rotates 90◦ after every T/4. At each given time,
the lattice possesses a simple 2D space group symme-
try p2111, which only includes two-fold rotations around
the AB-bond centers without reflection and glide-plane
symmetries. For example, the rotation Rπ around (a4 ,

a
4 )

transforms the coordinate (x, y, t) → (a2 − x, a2 − y, t). In
addition, there exist “time-screw” operations, say, an op-
eration S defined as a rotation around an A-site (0, 0) at
90◦ followed by a time-translation at T/4, which trans-
forms (x, y, t) → (y,−x, t+ T

4 ). Rπ and S are generators
of the space-time group for the Hamiltonian Eq. 7. Since
S is a time-screw rotation, this space-time group is non-
symmorphic. It is isomorphic to the 3D space-group I41,
while its 2D space subgroup p2111 is symmorphic. We
have checked that, for a static Hamiltonian taking any of
the bond configuration in Fig. 4 (b), the energy spectra
are fully gapped. However, the non-symmorphic space-
time group gives rise to spectral degeneracies. Its mo-
mentum Brillouin zone is depicted in Fig. 4 (c). The
space-time little group of the M -point (π, π) contains
both R and S satisfying RS = T (aŷ)SR = −SR. Simi-
larly, the X-point (π, 0) is invariant under both R and S2

satisfying RS2 = T (ax̂ + aŷ)S2R = −S2R. Hence, the
Floquet eigen-energies are doubly degenerate at M and
X-points as shown in Fig. 4 (d), showing a semi-metal
structure.
In conclusion, we have studied a novel class of D+1 di-

mensional dynamic crystal structures exhibiting the gen-
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eral space-time periodicities. Their MEBZs are D+1 di-
mensional torus and are typically momentum-energy en-
tangled. The band dispersions exhibit non-trivial wind-
ings around the MEBZs. The space-time crystal struc-
tures are classified by space-time group, which extend
space group for static crystals by incorporating time-
screw rotations and time-glide reflections. In 1+1D, a
complete classification of the 13 space-time groups is per-
formed, and there exist 275 space-time groups in 2+1 D.
Space-time symmetries give rise to novel Kramers degen-
eracy independent of the half-integer spinor structure.
The non-symmorphic space-time group operations lead
to protected spectral degeneracies for space-time crys-
tals. This work sets up a symmetry framework for ex-
ploring novel properties of space-time crystals. It also
serves as the starting point for future studies, for exam-
ple, the dynamical topological phases of matter based on
their space-time groups.
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Note added. Upon completing this manuscript, we no-
ticed an interesting and important work by T. Morimoto
et. al. [31] classifying Floquet topological crystalline in-
sulators with two-fold space-time symmetries.
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