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Abstract

Using in situ synchrotron X-ray diffraction and Raman spectroscopy in concert with first prin-

ciples calculations we demonstrate the synthesis of stable Xe(Fe,Fe/Ni)3 and XeNi3 compounds at

thermodynamic conditions representative of Earth’s core. Surprisingly, in the case of both the Xe-

Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. The results

indicate the changing chemical properties of elements under extreme conditions by documenting

that electropositive at ambient pressure elements could gain electrons and form anions.

1



Noble gas elements (NGEs) are considered as the most chemically inert elements due to

the closed subshells configuration that prevents the formation of stable compounds. How-

ever, recent theoretical studies [1–4] suggest that stable compounds between NGEs and

metals (electropositive at ambient conditions elements) could be formed under high pres-

sure conditions due to the substantial effect of pressure on the chemical properties. The

stability of such compounds can be attributed to the changes of chemical properties of ele-

ments under pressure [1, 5–7]. This includes altered electronegativity and reactivity, charge

transfer between orbitals and/or constitution elements, and the appearance of multicenter

bonding and electride states [8]. In general, for the predicted stable compounds of NGEs

and metals a NGE can either gain electrons from an electropositive, at the correspond-

ing pressures, element [3]or a metal becomes electronegative and acts as an oxidant (e.g.

Xe-Fe/Ni system [1]). The latter case is unusual and counters chemical intuition because

it implies that Fe and Ni become more electronegative than Xe. Experimental realization

of such compounds is incomplete highlighting the necessity of experimental verification of

theory to better understanding of the chemistry at extreme conditions and thus, advancing

chemistry and physics of highly compressed material states.

The formation of stable Xe-Fe(Ni) compounds would also change our understanding about

the presence of Xe in the Earth’s core. According to the simple mass fractionation model

(see discussion in Ref. [9, 10] and references therein), heavy NGEs should be less depleted

and isotopically fractionated in comparison to the lighter ones, in agreement to observations

in meteorites. However, in the Earth’s atmosphere, Xe is more depleted than Kr and more

fractionated than both Kr and Ar [9]. These two observations constitute one of the most

challenging open questions in the geosciences [9, 11], and give rise to the so-called “miss-

ing Xe paradox”. Although various models have been suggested on the origin of the Xe

depletion[12], it is commonly attributed to the inclusion of Xe in the Earth’s interior [10].

While Xe was reported to form compounds with water ice [13] and quartz [14], none of them

provide a plausible explanation to the “missing Xe paradox”[15]. The successful formation

of xenon oxides under deep mantle conditions has been recently reported [16]. However, the

presence of such compounds is precluded by the lack of free oxygen in Earth’s mantle.

Accordingly, a hypothesis of stable Xe-Fe/Ni compounds in the Earth’s core was proposed

as an explanation for the “missing” Xe [10]. In this scenario, other NGEs are not “miss-

ing” due to the much more extreme thermodynamic conditions needed for the formation
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of stable compounds [3]. Previous experimental attempts didn’t trace formation of Fe-Xe

compounds up to 200 GPa and below 2500 K [17–19] and this has been attributed to the

large size difference between Xe and Fe ions, which hinders the formation of Xe-Fe solid

solutions according to the Hume-Rothery rule [18]. A recent theoretical study [1], using

ab-initio calculations combined with structural search methods, suggests that Xe-Ni and

Xe-Fe compounds are thermodynamically stable above 150 GPa and 200 GPa respectively.

The stability of these compounds is enhanced at elevated temperatures (>2000 K) i.e. at

thermodynamic conditions representative of Earth’s outer core. The predicted crystal struc-

tures of Xe-Fe/Ni compounds are distinct from the structures of elemental Xe, Fe, and Ni at

the same thermodynamic conditions. This suggests that the formation mechanism of these

compounds goes beyond a simple element substitution.

In this study, we explored the possible formation of stable compounds in the Xe-Fe/Ni

system at thermodynamic conditions representative of the Earth’s core by performing high

pressure experiments in a laser-heated (LH) diamond-anvil cell (DAC) starting from the

following mixtures: a)Xe-Fe, b) Xe-Fe/Ni alloy (∼ 7% Ni) and c) Xe-Ni. Using in situ

synchrotron X-ray diffraction (XRD) and Raman spectroscopy we successfully identified

the formation of: a) a XeFe3/Xe(Fe0.93Ni0.07)3 compound, characterized as a mixture of a

FCC and an orthorhombic NbPd3-type structures, above 200 GPa and 2000 K and b) a

XeNi3 compound, in the form of a CrNi3-type FCC structure, above 150 GPa and 1500

K. Preliminary data on all these observations have been reported at the AGU 2015 Fall

meeting [20]. We find the formation of XeFe3 compounds above 200 GPa (in contrast with

previous studies [19]) while XeNi3 forms at much lower pressure signifying the importance of

the elemental electronic structure. The experimental results were examined and supported

in synergy with theoretical ab-initio structural search and optimization. The formation of

XeFe3 and XeNi3 compounds are kinetically driven with the structures identified in close

proximity to the computed energy minima. The theoretical reaction threshold pressures for

both compounds are in very good agreement with the experiment.

For the case of the Fe-Ni alloy with a Ni concentration (7-8%) representative of the

Earth’s core [21, 22] an iron Sikhote-Alin Meteorite was used as a proxy after chemical

and homogeneity characterization using EDX spectroscopy (see Fig.1 of the Supplemental

Material [23]). The XRD patterns of the Fe-Ni alloy used in this study are representative of

a HCP structure (see Fig 1(a)) with negligible cell volume difference (Fig. S2), at a given
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pressure, to that of pure Fe (also in HCP structure) in agreement with previous studies [24].

We performed LH experiments on both the Xe-Fe and Xe-Fe0.93Ni0.07 systems at various

pressures from 150 to above 210 GPa. No new Bragg peaks, signalling the formation of

new compounds, were observed below 195 GPa even after a prolonged LH above 3500 K,

see Fig. S3. However, new Bragg peaks appeared for both mixtures after LH at ∼2200 K

and pressures >200 GPa, implying an approximately 200 GPa reaction threshold, see Fig.

1(a) and Fig. S4(b). XRD patterns of the Xe-Fe and Xe-Fe0.93Ni0.07 systems after LH (Fig.

S4(a)) are essentially identical. Thus, we suggest that the presence of a low-concentration

of Ni in the Fe-Ni alloy has no effect on the structure of the synthesized compound. Bragg

peaks of pure Ni or a Fe0.97Ni0.07 BCC structure [21] were not observed during or after LH.

Consequently, the possibility of phase separation or a phase transition are ruled out.

The new peaks in XRD patterns after LH of the Xe-Fe and Xe-Fe0.97Ni0.07 mixtures

cannot be indexed solely with the FCC (Pm-3m) XeFe3 structure (Cu3Au type) predicted

by Zhu et al. [1] due to a much higher number of observed Bragg peaks and the presence

of low angle peaks (see Fig. 1(a)). Moreover, no Raman active modes are expected for

the Cu3Au-type structure in contrast with our Raman spectroscopy measurements (Fig.

S5(a)). We identified the products as a mixture of a FCC and an orthorhombic (namely

Pmmn (1)) phases with competitive enthalpies as revealed in our theoretical calculations,

Fig. 2(a). Details on the procedure we followed for the identification of the Pmmn (1) phase

can be found in the Supplemental Material together with the relevant structural parameters

including Wyckoff positions, see Table S1. The Pmmn (1) and the FCC structures are

closely related as both are close-packed with 12-fold coordinated Fe and Xe atoms. As a

result, the volumes of these two structures are essentially degenerate above 100 GPa (Fig.

1(c)).

The Bragg peaks of the experimental XRD patterns can be very well indexed with a

mixture of Pmmn (1) and Pm-3m structures. However, preferred orientation and strongly

anisotropic peak broadening effects, usual in HP-HT synthesis [25], prevent us from a full

structural refinement (Rietveld) of the positional parameters due to differences between the

observed and calculated intensities. Difference in relative intensities could also arise from a

positional disordered phase. For this reason, we have considered a positionally disordered

Pmmn (1) structure with a Xe(25%)-Fe (75%) site occupancy. This structure has a negligible

enthalpy difference with the ordered Pmmn (1) one and provides a better agreement with
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FIG. 1. a) XRD patterns of the Xe-Fe0.93Ni0.07 mixture before and after LH at 210 GPa. New

Bragg peaks after LH and corresponding Miller indices for the Pm-3m and the Pmmn XeFe3

crystal structures are noted with green and blue circles respectively. The peak marked by the

asterisk corresponds to the strongest peak of rhenium (gasket material). (b) Le Bail refinement of

the Xe(Fe0.93Ni0.07)3 compound at 210 GPa. The peaks of Pm-3m and Pmmn (1) structures are

marked with green and blue vertical lines, respectively. (c) EOSs of Fe and XeFe3/Xe(Fe0.93Ni0.07)3

as determined experimentally (dashed curves and solid symbols) and theoretically (solid curves)

in this study. The volume of the superposition of (Xe+3Fe)/4 is also shown for comparison.The

X-ray wavelength is λ=0.31Å.

the experimental XRD patterns at the low 2θ (high-d) range i.e. the range that is mainly

affected by a difference between an ordered and a positionally disordered structure. In

Fig. 1(b) we show the Le Bail refinement of the experimentally observed diffraction pattern

based on a mixture of Pmmn (1) (with Xe(25%)-Fe (75%)) and Pm-3m structures, after

5



FCC 

Pmmn (1)  
FCC 

Pmmn (2)  

Xe Ni Fe 

(c) 

50 75 100 125 150 175 200
-0.5

0.0

0.5

1.0

 XeNi
3
 - Pmmn (2)

 XeNi
3
 - FCC

 Xe+3Ni

 

 


H

f  (
eV

/a
to

m
)

Pressure (GPa)

(b)

100 125 150 175 200 225 250
-0.5

0.0

0.5

1.0


H
f  (

eV
/a

to
m

)
(a)

 XeFe
3
 - Pmmn (1)

 XeFe
3
 - FCC

 Xe+3Fe

 

Pressure (GPa)

FIG. 2. Calculated enthalpies of formation ∆Hf of: (a) XeFe3 and (b) XeNi3 with respect to the

mixture of elemental Xe + 3Ni and Xe + 3Fe, respectively. The enthalpies of the FCC structure

in both compounds were calculated in an ordered structure. The two Pmmn structures in XeFe3

and XeNi3 are distinctly different and therefore distinguished as Pmmn (1) and Pmmn (2). (c)

Schematic representations of the corresponding structures of XeFe3 and XeNi3.

subtracting (see Ref. [26] and Fig. S3(c) for a representative example) the Fe and Xe related

Bragg peaks.

Raman experiments on samples quenched to 300 K (Fig. S5(a)) show the presence of a

new broad weak peak at 450-480 cm−1. Low intensity Raman spectra are consistent with

the formation of a metallic or semi-metallic XeFe3 compound [1] and consequently only the

highest intensity peaks are expected to be observed. The position of the observed Raman

peak is indeed in agreement with the strongest calculated peak of the Pmmn (1) XeFe3

phase. The FCC XeFe3 compound is not expected to have any Raman activity. Thus the
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presence of the Raman bands strongly supports the existence of a second Pmmn (1) phase in

addition to FCC XeFe3. Moreover, the pressure slope of the experimentally observed peak

and of the most intense peak of the calculated Raman spectrum ( Fig. S5(b)) agree well,

thus, providing an additional argument in favor of the synthesis of the Pmmn (1) XeFe3

phase.

The experimentally determined volume of XeFe3, is 5% lower than that of the 1:3 solid

mixture of Xe and Fe and the theoretical EOS yields the same trend, with the XeFe3 having

8% smaller volume than the mixture, see Fig. 1(c). Compared to the experimental val-

ues, the theoretical volumes of Fe and XeFe3/Xe(Fe0.93Ni0.07)3 are clearly underestimated.

Here a possible source of error is the well-known insufficiency of standard DFT treating

the ground state of Fe, which was shown to be largely affected by dynamical many-body

effects [27]. Nevertheless, experiment and theory agree in that XeFe3 has a smaller volume

than its constituents, suggesting, together with the lower enthalpy, that this compound is

thermodynamically favored. On pressure release, both the XeFe3 and the Xe(Fe0.93Ni0.07)3

compounds remain stable down to, at least, 127 GPa (Fig. S6) followed by a decomposition

to Xe and Fe/Fe0.93Ni0.07 at lower pressures.

Figure 3(a) shows XRD patterns of the Xe-Ni mixture at 155 GPa before LH, upon

increasing temperature and at RT after LH. The XRD pattern before LH is representative

of a heterogeneous mixture of HCP-Xe [28] and FCC-Ni. With increasing temperature the

Ni Bragg peaks completely disappear above 1500 K while new peaks appear concomitantly

suggesting that Ni fully reacts towards the formation of a new compound that remains stable

after quenching to RT. Xe related Bragg peaks remain present suggesting conditions of Xe

excess in the cavity. The new Bragg peaks can be indexed with an A1 FCC unit-cell and

with a cell volume representative of a XeNi3 compound. This attribution is based on the

comparison between the atomic volumes of the synthesized compound, Ni and Xe at the

same pressure (see Fig. S7 and Fig. S8(b)). Fulfillment of the extinction conditions of

A1 by the observed reflections implies the formation of a CrNi3-type binary alloy with Xe

and Ni distributed randomly/statistically over the FCC sites. An ordered FCC structure

(Cu3Au-type) would have several additional low intensity Bragg peaks (see Fig. 3(b)), which

are absent in the XRD pattern of XeNi3.

The synthesized XeNi3 compound remains stable up to at least 100 GPa upon pressure

release, see Fig. S8(a). Significantly, both the experimentally determined and calculated
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FIG. 3. a) XRD patterns of Xe-Ni mixture at 155 GPa as a function of temperature. The peak

marked by the asterisk corresponds to the strongest peak of rhenium. The peaks of the hcp-Xe

and FCC-Ni at RT before LH are marked with black and red vertical lines, respectively. The

vertical arrows mark the position of the Bragg peaks of the XeNi3 compound. The corresponding

Miller indices for the FCC-Ni and the FCC-XeNi3 are noted before and after LH respectively.

b) XRD pattern of the synthesized XeNi3 compound in comparison to the calculated patterns of

ordered (blue) and disordered (red) FCC crystal structures. The calculated pattern of the hcp-Xe

is also shown for comparison. The vertical arrows mark the position of the additional Bragg peaks

expected in an ordered Cu3Fe-type FCC. The X-ray wavelength is 0.310 Å.

volume of XeNi3 is 10% smaller than that of the 1:3 solid mixture of Xe and Ni, suggesting

that the former is a stable compound (Fig. S7(b)). However, exact stoichiometry of the

synthesized compound may not be precisely determined. Nevertheless, both the experimen-

tally determined EOS and the predicted stability of the XeNi3 compound strongly suggest

a composition very close, if not exact, to XeNi3. The thermodynamic stability of the XeNi3

compound was investigated through the relative enthalpy of formation, ∆Hf , with respect

to a 1:3 solid mixture of Xe and Ni (Fig. 2(b)). The FCC structure is comparable in enthalpy

with the Pmmn structure (named here as Pmmn (2)) predicted by Zhu et. al. [1]. The
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∆Hf of the FCC structure is slightly higher than the latter one, i.e., by ∼0.04 eV/atom,

indicating a metastable structure close to the global minimum.

Considering that the formation of XeNi3 only takes place at high temperature it is rea-

sonable to suggest that the synthesis of this compound is kinetically-driven [29, 30]. The

∆Hf of the FCC structure approaches zero near 158 GPa, which corresponds very well with

the experimental reaction threshold of 155 GPa. Both FCC and Pmmn (2) structures are

close-packed with 12-fold coordinated Ni and Xe atoms (Fig. 2(c)), which explains their

similar enthalpies. The enthalpy change due to the positional disorders of Xe and Ni was

estimated using a FCC supercell of 256 atoms. A set of 200 structures were generated by

placing Xe and Ni atoms randomly at the FCC lattice sites; each representing a possible

solid solution configuration. The calculated enthalpies of these structures (at 150 GPa) is

within a 0.1 eV/atom range above the enthalpy of the ordered FCC structure.

Recently, Dewaele et al. [19] reported the synthesis of a stable XeNi3 compound with

an ordered FCC structure. Although the reported stoichiometry, the reaction threshold,

the volume per atom and the fundamental crystal structure are in agrement with this work

(see also Ref. [20]) a discrepancy exists on the detailed crystal structure i.e. ordered vs

disordered FCC. This can be attributed to differences in the quenching time. The formation

of an ordered structure requires substantial atomic diffusion, which is likely restricted by the

fast kinetics in the present case, i.e., the quenching process. Strictly speaking, in a positional

disordered structure the volume is a statistical average, which may deviate slightly from that

of an ordered structure. The present calculation reveals that the deviation is negligible in

the present thermodynamic scale which is further justified by the agreement of the reported

experimental volumes per atom (Fig. S7 ).

The successful synthesis of Xe-Ni/Fe compounds in this study, well supported and cor-

roborated by the theoretical calculations of the present and the previous study by Zhu et al.

[1], can be attributed to the changing chemical properties of elements under pressure. This

trend is clearly demonstrated by the calculated deformation charge density of XeFe3 and

XeNi3, defined as the difference between the charge density of the crystal and the superim-

posed charge densities of non-interacting atoms (Figs. 4a and 4b). In both cases, electrons

are removed from Xe (positive regions, red) and transferred to the metals (negative regions,

blue). According to previous theoretical studies (e.g. [1, 7]), application of pressure dramat-

ically affects the chemical properties of elements. Fe and Ni in particular, become highly
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electronegative and can act as oxidants in compounds. Xe, on the other hand, opens up the

fully filled 5p states as valence states. The charge transfer therefore takes place between the

Xe 5p states and the partially filled Fe/Ni 3d or 4s (if a s to d transition occurs in Fe/Ni)

states. Mulliken’s analysis of electron density reveals the amounts of transferred charge in

XeFe3 and XeNi3 are 0.64 e/Xe and 0.52 e/Xe, respectively, at 200 GPa. A greater amount

of charge transfer in XeFe3, which is visible in Fig. 4(a), is consistent with a lower occu-

pation (d6) in the 3d states of Fe as compared to the d8 occupation of Ni. The different

amounts of charge transfer also likely affect the reaction pressures for these two compounds.

Our experiments document that stable compounds of metals and NGEs can exist under

pressure, stabilized by a major electron transfer from Xe to Fe and Ni. For comparison,

much lower electron transfers between Na-He (-0.174e/He) and Cs-Xe (-0.14-0.18e/Xe) were

calculated in the cases of the synthesized Na2He [8] and predicted CsXe2 [4] compounds,

respectively. This highlights a bonding scheme that is quite different of the ones in the

cases of: a) Van der Waals Xe-H2 and Xe-N2 compounds stabilized at elevated pressures

[31, 32] and b) compounds between alkali and alkali earth metals and NGEs. This bonding

pattern resembles more the bonding between high-Z NGEs, such as Xe and Kr, and strong

electronegative elements such as F [33, 34], Cl and O [35] at ambient pressure. Thus, our

study signifies a near halogen-like behavior of Fe and Ni under high-pressure conditions in

agreement with theoretical predictions [1, 7].

The possible formation of stable Xe-Fe compounds at Earth’s core thermodynamic con-

ditions was previously considered [1, 10, 18] as a possible explanation of Xe depletion in

the Earth’s atmosphere. Although our study provides the first experimental evidence of the

stability of Xe-Fe compounds at relevant thermodynamic conditions, it is unlikely that such

compounds have been formed during the Earth’s core accretion. The formation pressure of

such compounds (200GPa), as determined in this work, is too high compared to that sug-

gested for the Earth’s core accretion pressure (near 50 GPa) using geochemical arguments

[36]. Moreover, Mars atmosphere is also depleted in Xe while martian core pressure is ∼40

GPa while it is plausible to assume that Xe depletion likely stems from the same process for

both planets. This suggests that the formation of XeFe3 is an unlikely explanation of the

“missing Xe paradox”and thus, alternative, to the Earth’s core reservoir, scenarios should

be considered [17]. Alternatively, a two step mechanism should be considered: an increased

solubility of Xe in molten Fe at lower accretion pressures followed by a reaction at higher
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FIG. 4. Calculated deformation charge density of XeFe3 in the (010) plane (a) and XeNi3 in the

(001) plane (b) at 200 GPa.

pressures. However, this extends beyond the scope of this work and calls for follow-up

relevant studies.
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