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We show the existence of a flat band consisting of photonic zero modes in a gain and loss modulated
lattice system, as a result of the underlying non-Hermitian particle-hole symmetry. This general
finding explains the previous observation in parity-time symmetric systems where non-Hermitian
particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose
emergence can be viewed as an unconventional alignment of a pseudo-spin under the influence of a
complex-valued pseudo-magnetic field. These defect states also behave as a chain with two types of
links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly
localized with the gain and loss strength.

Defect states are ubiquitous in periodic systems due
to the existence of bandgaps. In the simple case of a
point defect, if its energy falls deep into a bandgap, then
it cannot couple efficiently to the rest of the system,
where no propagating mode exists at its energy. As a
result, a defect state localized at this point is formed, no
matter whether the defect is in the bulk or at the edge
of the system. Take the simplest periodic system in one
dimension (1D) for example, its unit cell contains one
element of energy ω0 that couples to its nearest neighbors
with strength t > 0, where a single band extends from
[ω0 − 2t, ω0 + 2t] across the Brillouin zone (BZ). A defect
state forms if the on-site energy of a single defect at
the edge is detuned from ω0 by more than t, and it
appears above (below) this band if the detuning is positive
(negative).

A particular interesting case for defect states is in the
presence of a flat band, where a small detuning is sufficient
to create a defect state in general. A flat band is disper-
sionless inside the whole BZ, and systems that exhibit
flat bands have attracted considerable interest in the past
few years, including optical [1, 2] and photonic lattices
[3–6], graphene [7, 8], superconductors [9–12], fractional
quantum Hall systems [13–15] and exciton-polariton con-
densates [16, 17]. Due to the singular density of states at
the flat band energy, several interesting localization phe-
nomena and their scaling properties have been identified
[18–22].

In Refs. [23–25], parity-time (PT ) symmetric pertur-
bations, i.e., those with a complex potential satisfying
V (x) = V ∗(−x) [26–51], were introduced to study their
effects on an existing flat band in the underlying Hermi-
tian system. In the meanwhile, it was known that the
introduction of a PT -symmetric potential can collapse
two neighboring bands into a single one in terms of their
real parts [32], which is flat in some cases [52, 53]. The
conditions that lead to this flatness in a non-Hermitian
system were poorly understood, and in this work we point
out that the mechanism that leads to these flatbands is

actually due to another symmetry, i.e., non-Hermitian
particle-hole (NHPH) symmetry [54, 55]. We should men-
tion that similar to the Hermitian case, a non-Hermitian
flat band can also exist by engineering a Wannier function
that is an eigenstate of the whole lattice (see Sec. I in
Ref. [56], which includes Refs. [57–59]).

With NHPH symmetry, the effective Hamiltonian anti-
commutes with an antilinear operator, and a particular
simple way to achieve it employs a photonic lattice [55]:
starting with an underlying Hermitian system with chiral
symmetry (also known as sublattice symmetry), which
consists of identical elements on two sublattices coupled
by nearest neighbor coupling (e.g., a square lattice, honey-
comb lattice and so on), NHPH symmetry is automatically
satisfied once spatial gain and loss modulation is applied.

The flat band resulted from NHPH symmetry consists
of photonic zero modes, which share certain traits as their
condensed matter counterparts (i.e., the Majorana zero
modes [60–62]). However, these photonic zero modes are
not necessarily localized in space, and we study the defect
states emerging from these non-Hermitian flat bands by
introducing a point defect. We employ the simplest 1D
photonic lattice mentioned before but now with gain and
loss modulation that doubles or quadruples the size of
the unit cell. We show that a flat band is formed when
the gain and loss strength γ exceeds a critical value. Now
by introducing a point defect at the edge of the system, a
defect state appears and becomes increasingly localized as
the non-Hermiticity of the system increases. This defect
state behaves as a chain with two types of links, one rigid
within a unit cell and one soft between unit cells. We
find that the emergence of the defect state can be viewed
as an unconventional alignment of a pseudo-spin under
the influence of a complex-valued pseudo-magnetic field,
and in some cases, the result of a PT transition. These
results are first discussed using a tight-binding model and
then verified by ab-initio vector simulations of Maxwell’s
equations in photonics waveguides.

Non-Hermitian Flat Band — The periodic system we
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FIG. 1. (Color online) (a) Schematic of a gain and loss modu-
lated lattice with period m = 2. The box indicates the unit
cell. (b) and (c) Real and imaginary parts of the bands in
(a). The dashed lines in (b) mark the Hermitian bands when
γ = 0. The dash-dotted line show their partial collapse when
γ = 1.5t. The solid line shows the completed flat band when
γ ≥ 2t. The solid and dotted lines in (c) are for γ = 2t and
3t, respectively.

consider is the simplest 1D lattice mentioned in the intro-
duction, and we choose the identical on-site energy of the
lattice sites to be the zero point of its energy levels. With
the introduction of gain and loss modulation, the non-
Hermitian system can be captured by the tight-binding
model

i∂tψn = iγnψn + t(ψn−1 + ψn+1) (n = 1, 2, . . .). (1)

Below we consider a periodic imaginary potential with
γn = γn+m where m is an even integer. For an odd m the
system does not have two sublattices and hence NHPH
symmetry does not hold.

When the period m equals 2 [see Fig. 1(a)], the effective
Hamiltonian can be written in the following form, by
dropping an offset of the imaginary potential:

H2 =

[
iγ t(1 + e−2ik)

t(1 + e2ik) −iγ

]
. (2)

γ here is defined as (γn − γn+1)/2, and we have set
the distance between two neighboring lattice sites to
be 1. The dispersion relations of this system are then
given by ε±(k) = ±

√
2t2(1 + cos 2k)− γ2 in the BZ

k ∈ [−π/2, π/2). This effective Hamiltonian satisfies

{H2, CT } = 0, [H2,PT ] = 0, (3)

i.e., it has both NHPH symmetry and PT symmetry (see
Sec. II in Ref. [56]). Here T is the time-reversal operator
in the form of the complex conjugation, and the chiral
operator C = σz and parity operator P = σx are given by
the Pauli matrices. The curly and square brackets denote
anti-commutation and commutation relations as usual.

We note that PT symmetry dictates that the bands
of the system satisfy εi(k) = ε∗j (k), where i, j are band
indices. In the case that i, j are different, the two bands
have the same Re[ε] but different Im[ε], which was a result
of spontaneous PT symmetry breaking [27]. Nevertheless,
PT symmetry does not ensure that their identical Re[ε]
needs to be flat in the BZ, and in Ref. [32] this merged
band was indeed found to be curved.

NHPH symmetry, on the other hand, leads to a band
structure satisfying εi(k) = −ε∗j (k) instead [55]. It clearly
indicates that when i = j, a flat band at Re[ε] = 0 can
emerge with photonic zero modes. For the m = 2 case
above, this flat band starts to emerge from the boundary of
the BZ as soon as γ is nonzero, and it is formed completely
when γ > γc ≡ 2t [see Fig. 1(b)]. In Sec. III of Ref. [56] we
show another example where m = 4 and the system lacks
PT symmetry; the existence of a non-Hermitian flat band
in this case corroborates the role of NHPH symmetry.

Defect States — Having shown that NHPH symmetry
leads to a non-Hermitian flat band, next we probe the
defect states emerging from it. One example is shown in
Fig. 2(a) where a defect of detuning ∆ is introduced to the
left edge of the system (now of a finite length). We note
that the defect state is formed at a small ∆ as a result of
the flat band, which is in contrast to the Hermitian case
(e.g., the simplest 1D lattice) we have mentioned in the
introduction.

One interesting feature of the defect state is its stag-
gered intensity profile on the log scale [Figs. 2(c) and (d)]:
if we define the unit cells by counting from the n = 2 site
(i.e., avoiding the defect at the left edge), the intensity
ratio R within each unit cell is a constant for all unit cells.
The same is true for the intensity ratio R′ between the
gain (loss) sites in two neighboring unit cells. Based on
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FIG. 2. (Color online) Emergence of a defect state from a
non-Hermitian flat band as a function of the defect detuning
∆, where the period of the gain and loss modulation is m = 2.
(a) and (b) Real and imaginary parts of the defect state energy
as a function of the detuning ∆. The solid lines and the
dots show numerical results and the analytical expression (4),
respectively. γ = 2t is used. In (a) the grey lines show the
almost unperturbed flat band energies of the bulk modes. In
(b) the dashed line shows the localization length of the defect
state. (c) Intensity profile of the defect state with ∆ = t.
γ = 2t (1.3t) for the solid (dotted) line. Only the left 5 unit
cells are shown (marked by the “rigid links” that are parallel
and γ-independent). (d) Same as (c) but with ∆ = t/2.
γ = 2t (1.1t) for the solid (dotted) line.
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these observations, we derive an analytical expression for
ε∆ of the defect state in Sec. IV of Ref. [56]:

ε∆ =
(t2 + ∆2)∓

√
(t2 −∆2 − 2iγ∆)2 + 4t2∆2

2∆
, (4)

where the “−(+)” sign should be used for ∆ < t (∆ > t).
This expression agrees nicely with the numerical data in
Figs. 2(a) and 2(b).

Furthermore, we find that the intra-cell intensity ratio
R mentioned above is simply given by

R =
∆2

t2
(5)

and independent of the non-Hermitian parameter γ. In
the meanwhile, the inter-cell intensity ratio R′ is given by

R′ =
∆4

t4

∣∣∣∣ε∆ + iγ

ε∆ − iγ

∣∣∣∣2 , (6)

which does vary with γ. Therefore, the defect state be-
haves as a chain with two types links as we increase the
non-Hermiticity of the system via γ, one rigid within
a unit cell and one soft between unit cells. This ob-
servation also indicates that the wave function of the
defect state is exponentially localized on both sublattices
[Figs. 2(c) and (d)], with the same localization length
given by ξ = 4/ lnR′. At first glance this result may seem
counterintuitive because one would expect that the inten-
sity of the wave will be amplified on the gain lattice sites
and attenuated on the loss lattice sites, which will result
in a varying inter-cell intensity ratio along the lattice and
different localization lengths on the gain and loss sublat-
tices. However, we remind the reader that here gain and
loss do not describe wave propagation along the lattice.
It is most obviously in a photonic lattice consisting of
parallel waveguides, where the gain and loss characterizes
wave propagation along the waveguides. We also note that
the localization length is not directly related to Im[ε∆].
The latter is determined simultaneously by R and R′,
which lead to a non-monotonic ∆-dependence of Im[ε∆]
[see Fig. 2(b)]; the localization length, on the other hand,
reduces monotonically as ∆ increases.

Another interesting question about the defect state is
how it evolves from the underlying Hermitian system as
γ increases and the flat band is formed. As Figs. 3(a) and
3(b) show, the defect state originates from the middle
of the Hermitian band, especially when ∆ is small. By
inspecting Eq. (4), we find that |∆| = t is a special case,
where a PT transition takes place at γ = t. We note
that this is a different PT transition from those that take
place on the real-ε axis when the flat band is formed. We
also note that Eq. (4) applies only when the defect state is
localized and has a staggering intensity profile. Therefore,
it is not surprising that its prediction in Fig. 3(a) [and
Fig. 3(b)] deviates from the numerical result when γ is
small and the defect state is still in the bulk (see Sec. V
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FIG. 3. (Color online) Emergence of a defect state from a non-
Hermitian flat band as a function of the gain and loss strength
γ with period m = 2. (a) and (b) Real part of all the modes
in the system (solid lines) with ∆ = t and t/2, respectively.
The black line indicates the evolution of the defect mode, and
the circles are the prediction of Eq. (4). (c)–(e) False color
plots of the pseudo-spin 〈σ〉x,y,z as a function of position and
γ in (a). Only the left 25 unit cells are shown.

in Ref. [56]). Nevertheless, the PT -broken phase of ε∆

in γ > t, characterized by its γ-independent real part, is
faithfully manifested by the numerical data.

Now if we inspect the spatial profile of the defect state
as it evolves with γ, we observe an unconventional align-
ment of a pseudo-spin under the influence of a complex-
valued pseudo-magnetic field. To be more specific, we
first rewrite the effective Hamiltonian (2) using the Pauli
matrices:

H2 = t(1 + cos ka)σx − t sin ka σy + iγ σz ≡ −h ·σ, (7)

where h(γ) = [−t(1+cos ka), t sin ka,−iγ] is our complex-
valued pseudo-magnetic field. We normalize the wave
function [ψL, ψG]T in each unit cell when calculating 〈σ〉,
and the result is plotted in Figs. 3(c)–(e) as a function
of γ when ∆ = t. It is clear that 〈σ〉 displays a spatially
dependent orientation when γ < t, but an aligned 〈σ〉 is
found across the whole lattice when γ > t. This value of
〈σ〉 is given by (−1, 0, 0) and can be viewed as the result
an unconventional alignment of a pseudo-spin, since the
direction of a complex h cannot be uniquely defined.
The same alignment process takes place for other values
of ∆ as well. For example, 〈σ〉 becomes [−0.8, 0,−0.6]
when ∆ = t/2. We note that 〈σ〉y is always zero in the
aligned state; it is in fact proportional to the optical
flux between the gain and loss sites [63] in a unit cell by
definition [i.e., i(ψ∗GψL − ψGψ∗L)], which vanishes as one
can show that ψL/ψG = −∆/t is real (whose square gives
R). Using this ratio we also derive 〈σ〉x = −2∆t/(∆2+t2),
〈σ〉z = (∆2 − t2)/(∆2 + t2), which agree nicely with



4

their aforementioned numerical values (see also Sec. VI
in Ref. [56]).

Photonic realization — Next we present a realistic de-
sign using coupled photonic waveguides to demonstrate
the practical feasibility of the predicted effects given above.
Each waveguide has a square cross section, which is 1.5 µm
wide and has a 500-nm-thick InGaAsP mutiple quantum
wells on top of an InP substrate [see Fig. 4(a)]. When
optically pumped, the quantum wells supply the gain
while the loss can be provided, for example, by a thin
Cr/Ge double layer on top of the quantum wells that
also blocks the pump. Similar structures have been used
in a number of experimental demonstrations with fine
controlled gain and loss ratios [64, 65]. The propagating
mode along the waveguide direction can be denoted by
~Ψ(x, y, z) = ~E(x, y)e−iβz, where ~E is the vector electric
field. The propagation distance z and propagation con-
stant β now play the roles of time and the eigenvalue ε
of the effective Hamiltonian, respectively.

Below we introduce the effective index neff = βλ/2π
to characterize each propagating mode, with the wave-
length chosen at λ = 1.55µm. By performing a finite-
difference-time-domain simulation of Maxwell’s equations
using MEEP [66] and a perfectly matched layer as the
global boundary condition, we find neff = 3.25 ≡ n0

for the fundamental mode in a single waveguide [see
Fig. 4(b)]. With two coupled waveguides separated by
0.2 µm, we find that the two corresponding neff’s now
differ by 1.17× 10−4, indicating a dimensionless coupling
constant t = 5.83× 10−5. Now if we consider 20 waveg-
uides, their individual fundamental modes couple to form
a band with bandwidth ∆neff = 2.31×10−4, which agrees
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FIG. 4. (Color online) (a) Schematic of coupled photonic
waveguides with alternate gain and loss. The refractive indices
used are 3.17 (InP), 3.44 + in′′ (InGaAsP), and 3.44 − in′′
(Cr/Ge + InGaAsP). (b) |Ex| component of the fundamental
mode in a single waveguide when n′′ = 0. (c)–(f) Real part of
the band structure when n′′ = 0, t, 2t.
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FIG. 5. (Color online) A defect state with a staircase profile.
(a) Same as Fig. 4(b) but with 20 coupled waveguides and
n′′ = 2t. The refractive index of the left waveguide is now
increased by δn = 7.43 × 10−5. (b) Its staggering profile at
n′′ = 2t (solid line) and 1.3t (dotted line). |Ex| is taken at
y ≈ 1.2µm where it is maximized. The horizontal “rigid
links” from Fig. 2(c) are reproduced here and the agreement
is excellent.

well with the tight-binding prediction (4t) mentioned in
the introduction [see Fig. 4(c)]. By increasing gain and
loss incorporated as the imaginary part n′′ of the top
layer(s) that plays the role of the non-Hermitian parame-
ter γ, we illustrate the forming of the non-Hermitian flat
band in Figs. 4(e) and 4(f) when n′′ is increased to 2t,
again verifying the prediction of the tight-binding model.
Furthermore, we introduce a “point defect” similar to
Fig. 2 by including an index detuning δn = 7.43× 10−5

in the gain layer of the left waveguide, which can be
achieved, for example, by placing a layer of Ge on top
of the waveguide [64, 65] (see also Sec. VII in Ref. [56]);
it results in a change of the single-waveguide neff by t,
and we recover the staircase mode profile that displays
an n′′-independent “rigid link” inside a unit cell and an
n′′-dependent “soft link” between unit cells (see Fig. 5).

Conclusion and Discussion — In summary, we have
shown that NHPH symmetry can lead to a flat band
consisting of photonic zero modes, which explains the
previous finding in PT -symmetric systems where NHPH
symmetry is hidden. Although we have only examined
1D lattices here, this mechanism also applies in higher
dimensions (see Sec. VIII in Ref. [56], which includes
Ref. [67]). The defect states emerging from this flat band
exhibit several interesting properties, such as possessing
two types of links, one rigid within a unit cell and one soft
between unit cells, as the defect states become increas-
ingly localized with the non-Hermitian parameter. These
behaviors, first predicted using a tight-binding model,
have been verified by full vector simulations of Maxwell’s
equations for the propagation modes in coupled photonic
waveguides.

The emergence of these defect states can be viewed as
an unconventional alignment of a pseudo-spin under the
influence of a complex-valued pseudo-magnetic field, and
in certain cases, the result of a PT transition. We note
that for this pseudo-spin in our photonic lattice, spin-spin
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and spin-orbital interactions are absent and difficult to
introduce, hence they are not considered here.
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